
Kyoukai Documentation
Release 2.2.1

Isaac Dickinson

Sep 05, 2017

Main usage

1 About 1

2 Installation 3

3 Contents: 5
3.1 Your First Kyoukai App . 5
3.2 Asphalt usage . 9
3.3 Handling Errors Within Your Application . 11
3.4 Blueprints . 12
3.5 Requests and Responses . 14
3.6 Deploying Your App . 19
3.7 Advanced Routing . 19
3.8 Request Hooks . 21
3.9 Route Groups . 22
3.10 Host Matching . 25
3.11 HTTPS Support . 26
3.12 HTTP/2 Support . 26
3.13 Running Under gunicorn . 29

4 Automatically generated API documentation 31
4.1 Kyoukai Autodoc . 31
4.2 Kyoukai Changelog . 72

5 Indices and tables 77

Python Module Index 79

i

ii

CHAPTER 1

About

Kyoukai is a fast asynchronous Python server-side web microframework. It is built upon asyncio and Asphalt for
an easy to use web server.

Kyoukai is Flask inspired; it attempts to be as simple as possible, but without underlying magic to make it confusing.

1

https://docs.python.org/3/library/asyncio.html#module-asyncio
http://asphalt.readthedocs.io/

Kyoukai Documentation, Release 2.2.1

2 Chapter 1. About

CHAPTER 2

Installation

Kyoukai depends heavily on the asyncio library provided by Python3.4+, and certain language features added in
Python 3.5. This means the library is not compatible with code that does not use Python 3.5 or above.

Kyoukai is shipped as a PyPI package, so can be installed easily with pip.

$ pip install kyoukai

Alternatively, if you want cutting edge, you can install directly from git.

$ pip install git+https://github.com/SunDwarf/Kyoukai.git

Note that the Git version is not guarenteed to be stable, at all.

3

Kyoukai Documentation, Release 2.2.1

4 Chapter 2. Installation

CHAPTER 3

Contents:

3.1 Your First Kyoukai App

In this tutorial, we’ll go through how to write your first Kyoukai app.

3.1.1 Application Skeleton

Strap in with your favourite IDE, and create your first new project. Name it something silly, for example
my-first-kyokai-project. The name doesn’t matter, as you probably won’t be using it for long.

Directory layout

Kyoukai projects have a very simple layout.

$ ls --tree

app.py
static
templates

There are three components here:

• app.py

– This contains the main code for your app. This can be named absolutely anything, but we’re naming it
app for simplicity’s sake.

• templates

– This contains all the templates used for rendering things server-side, or for putting your JS stack of doom
inside.

• static

5

Kyoukai Documentation, Release 2.2.1

– This contains all the static files, such as your five bootstrap theme CSS files, or the millions of JS libraries
you’ve included.

3.1.2 Writing the App

Open up app.py and add your starting line.

from kyoukai import Kyoukai

This imports the Kyoukai application class from the library, allowing you to create a new object inside your code.

Creating the App Object

The central object in your file is the Kyoukai object. This object is core for handling requests from clients, including
routing and handling errors.

app = Kyoukai("my_app")

The name passed into the constructor is the application name - right now, this is irrelevant. However, it is a required
param, so you should pass something like your application’s name.

Routes

Routes in Kyoukai are very simple, and if you have ever used Flask, are similar in style to Flask routes.

Routes are made up of three parts:

• The path

– This is a Werkzeug-based route path that uses Werkzeug to match route paths. For more information, see
http://werkzeug.pocoo.org/docs/0.11/routing/ .

• The allowed methods

– This is a list, or set, or other iterable, of allowed HTTP/1.1 methods for the route to handle. If a method (e
.g GET) is not in the list, the route cannot handle it, and a HTTP 405 error will automatically be passed to
the client.

• The route itself

– Your route is a coroutine that accepts one argument, by default: the a new HTTPRequestContext,
containing the request data and other context specific data.

async def some_route(ctx: HTTPRequestContext): ...

We are going to write a very simple route that returns a Hello, world! file.

3.1.3 Creating the route

Routes in Kyoukai are created very similarly to Flask routes: with a decorator.

@app.route("/path", methods=["GET", "POST"])

6 Chapter 3. Contents:

http://werkzeug.pocoo.org/docs/0.11/routing/

Kyoukai Documentation, Release 2.2.1

Note: As explained above, the route decorator takes a path and a method. This route decorator returns a Route class,
but this isn’t important right now.

The router decorator can be found on one of two objects:

• Your Kyoukai application object (which internally reroutes it to Kyoukai.root)

• A Blueprint application object.

The Route Coroutine

Your route function must be a coroutine. As Kyoukai is async, your code must also be async.

@app.route("/")
async def index(ctx): ...

Inside our route, we are going to return a string containing the rendered text from our template.

Templates

Templates are stored in templates/, obviously. They are partial HTML code, which can have parts in it replaced
using code inside the template itself, or your view.

For now, we will put normal HTML in our file.

Open up templates/index.html and add the following code to it:

It's current year, and you're still using blocking code? Not me!

Warning: Do not replace current year with the actual current year.

Save and close the template.

Rendering the template

Since the template is a very simple HTML document, no additional rendering is needed; you can simply use
as_html() to render the document.

@app.route("/")
async def index(ctx):

with open("templates/index.html") as f:
return as_html(f.read())

as_html() requires an extra import, from kyoukai.util import as_html to use. For more information
about these helper functions, see Requests and Responses.

3.1.4 Responses

Note, how in the previous coroutine, we simply returned a str in our route. This is not similar to aiohttp and
the likes who force you to return a Response. You can return a response object in Kyoukai as normal, but for
convenience sake, you can also return simply a string or a tuple.

3.1. Your First Kyoukai App 7

Kyoukai Documentation, Release 2.2.1

These are transparently converted behind the scenes:

r = Response(code=route_result[1] or 200, body=route_result[0], headers=route_
→˓result[2] or {})

That is, the first item is converted to your response body, the second item (or 200 by default) is used as the response
code, and the third code is used as the headers.

Note: All return params except the first is optional, if you do not return a Response object.

3.1.5 Running your App

The ideal way of running a Kyoukai project is through the Asphalt framework. See Asphalt usage for more information
on how to use this.

However, Kyoukai includes a built-in way of running the app from blocking code.

app.run(ip="127.0.0.1", port=4444)

Note: The args passed in here are just the default values; they are optional.

Open up your web browser and point it to http://localhost:4444/. If you have done this correctly, you should
see something like this:

Fig. 3.1: example 1

3.1.6 Deploying

There’s no special procedure for deploying your app. The inbuilt webserver is production ready, and you can run your
application in a production environment in the same way as you would develop it.

3.1.7 Finishing your project

You have completed your first Kyoukai project. For maximum effectiveness, you must now publish it to GitHub.

8 Chapter 3. Contents:

http://localhost:4444/

Kyoukai Documentation, Release 2.2.1

$ git init
$ git remote add origin git@github.com:YourName/my-first-kyoukai-project.git
$ git add .
$ git commit -a -m "Initial commit, look how cool I am!"
$ git push -u origin master

3.2 Asphalt usage

The Asphalt Framework is a microframework for asyncio-based applications and libraries, providing useful utilities
and common functions to projects built upon it.

It also provides a common interface for applications to use components to enhance the functionality in an easy asyn-
chronous way.

3.2.1 Config File

The core part about adding Asphalt to your project is the config.yml file that exists at the core of every app. This
defines how the application should be ran, and what settings each component within should have.

These config files are standard YAML files, with one document. An example file for a Kyoukai project would be:

component:

type: kyoukai.asphalt:KyoukaiComponent
app: app:kyk

Let’s break this down.

1. First, you have the component: directive. This signifies to Asphalt that you wish to define a list of
components to add to your project.

2. Next, you have the type directive. This tells Asphalt what type of component to use in the application.

In this example, the KyoukaiComponent is specified directly, meaning that you wish the framework
to create a single-component application, with the root component being Kyoukai’s handler.

3. Finally, the app directive. This tells the KyoukaiComponent to use the app specified by the string
here.

In app:kyk, the first part before the : signifies the FULL IMPORT NAME (the name you would use in
an import statement, e.g import app), and the second part signifies the object to use.

To run an app using Asphalt, you merely need to run:

asphalt run config.yml

The Asphalt runner will automatically run and load your application.

3.2.2 Adding Components

Components are a way of adding useful parts to your project without additional manual set up. In this example, we
will add a SQLAlchemy component to the app.

3.2. Asphalt usage 9

Kyoukai Documentation, Release 2.2.1

The Container

First, a new container object is required to store the components that are added to the application. Every container is
inherited from asphalt.core.component.ContainerComponent

in order to add components to the app.

We’re gonna start with a small project layout:

$ ls --tree

application
container.py

static
templates

This will be the basic project format from now on.

Inside container.py, add the following code:

from asphalt.core import ContainerComponent, Context
from kyoukai import Kyoukai
from kyoukai import KyoukaiComponent

app = Kyoukai("api")

class AppContainer(ContainerComponent):
async def start(self, ctx: Context):

self.add_component('kyoukai', KyoukaiComponent, ip="127.0.0.1", port=4444,
app=app)

await super().start(ctx)

That’s a lot of code to process. Let’s break it down again.

1. First, you have the creation of the app. Nothing unusual here.

2. Next, the definition of a subclass for the app. This container contains a set of components, which are added to
the app at run time, and configured appropriately.

3. The addition of the KyoukaiComponent to the app. This adds the Kyoukai handler to Asphalt, which configures
the application to run with additional contexts.

4. A super call, which tells Asphalt to run our app immediately.

We’re not done yet, however. Now, the config file needs to be run.

Add a basic configuration file, named config.yml, with this simple piece of code.

component:

type: application.container:AppContainer
components:
kyoukai:

ip: "127.0.0.1"
port: 4444

This creates a new AppContainer instance, and edits the configuration of the Kyoukai component within to set the IP
and port to the ones in the config file.

To run this application, it’s as simple as the first Asphalt call:

10 Chapter 3. Contents:

Kyoukai Documentation, Release 2.2.1

asphalt run config.yml

Adding SQLAlchemy

Now that you’ve seen how to add basic components to your project, adding SQLAlchemy is easy.

Edit your start method in your AppContainer to add this line above your super call:

self.add_component('sqlalchemy', SQLAlchemyComponent)

Make sure to the add the import for this (from asphalt.sqlalchemy.component import
SQLAlchemyComponent) too.

Next, in your config.yml, add a new section under components:

sqlalchemy:
url: "sqlite3:///tmp/database.db"
metadata: application.db:metadata

This will automatically configure a SQLite3 database at /tmp/database.db to run with your application.

Note that the reference for the metadata doesn’t exist. You create your metadata like any other SQLAlchemy applica-
tion, however you don’t add an engine or a session. The engine and session are automatically provided.

3.3 Handling Errors Within Your Application

As with all code, eventually bugs and other exceptions will come up and risk ruining everything inside your app.
Fortunately, Kyoukai handles these errors for you, and allows you to process them safely.

Error handlers are a way of handling errors easily. They are automatically called when an exception is encounted
inside a route.

For example, if you have a piece of faulty code:

return "{}".format(a) # 'a' is not defined

A NameError will normally be raised. However, Kyoukai will automatically catch the error, and re-raise it as a
HTTP 500 exception. Normally, this exception wouldn’t be handled, and would respond to the client with a 500
body. However, it is possible to catch this exception and do what you wish with it.

3.3.1 The errorhandler decorator

To create an error handler, you simply wrap an existing function with the errorhandler decorator, providing the
integer error code that you wish to handle. So for example, to create a 500 error handler, you would do:

@app.root.errorhandler(500)
async def handle_500(ctx: HTTPRequestContext, exc: HTTPException):

return repr(exception_to_handle)

Of course, you can have anything in the body of the error handler. Whatever is returned from this error handler is sent
back to the client.

New in version 2.2.1.

3.3. Handling Errors Within Your Application 11

https://docs.python.org/3/library/exceptions.html#NameError

Kyoukai Documentation, Release 2.2.1

You can also have an error handler handle multiple codes in the same function by decorating it multiple times, or
passing a range of errors to handle.

handle error 502 and errors 400 (inclusive) to 414 (exclusive)
@app.root.errorhandler(500)
@app.root.errorhandler(400, 414)
async def handle_many(ctx: HTTPRequestContext, exc: HTTPException):

...

Changed in version 2.2.1.

If you need to access the arguments provided in the route when handling an error, you can use
HTTPRequestContext.params, which will be a dict of the parameters passed to the function based on the
routing URL.

3.3.2 HTTP Exceptions

HTTP exceptions in Kyoukai are handled by Werkzeug, which prevents having to rewrite large amounts of the error
handling internally.

For more information on Werkzeug’s HTTPException, see werkzeug.exceptions.HTTPException.

To abort out of a function early, you can use werkzeug.exceptions.abort() to raise a HTTPException:

if something is bad:
abort(404)

3.4 Blueprints

New in version 1.5.

Changed in version 2.1.2: Host Matching is now supported. See Host Matching.

In Kyoukai, routes are stored inside a tree structure consisting of multiple Blueprint objects with a parent and children.
Each Blueprint contains a group of routes stored on it, which inherit the request hooks and the API prefix of all of its
parents.

Blueprints are instantiated similar to app objects, with a name.

my_blueprint = Blueprint("my_blueprint")

Additionally, blueprints take an additional set of parameters which can be used to more finely control the behaviour.

• prefix: The URL prefix to add to every request. For example, if this is set to /api/v1`, every
request attached to this blueprint will only be accessible via ``/api/
v1/<route>.

3.4.1 A note on the tree

Blueprints are stored inside a tree structure - that means that all Blueprints have a parent blueprint and 0 to N children
blueprints.

When registering an error handler, or a request hook, children blueprints automatically inherit these unless they are
overridden on the child level.

12 Chapter 3. Contents:

http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException

Kyoukai Documentation, Release 2.2.1

3.4.2 Routing

Routing with Blueprints is incredibly similar to routing with a bare app object. Internally, an @app.route maps to
routing on an underlying Blueprint object used as the “root” blueprint.

@my_blueprint.route("/some/route")
async def some_route(ctx: HTTPRequestContext):

return "Some route"

Blueprint.route(routing_url, methods=(’GET’, ’HEAD’), **kwargs)
Convenience decorator for adding a route.

This is equivalent to:

route = bp.wrap_route(func, **kwargs)
bp.add_route(route, routing_url, methods)

Changed in version 2.2.0: Now accepts a Route as the function to decorate - this will add a new routing url and
method pair to Route.add_route().

3.4.3 Error handlers

Error handlers with Blueprints are handled exactly the same as error handlers on bare app objects. The difference
between these however is that error handlers are local to the Blueprint and its children.

@my_blueprint.errorhandler(500)
async def e500(ctx: HTTPRequestContext, err: Exception):

return "Handled an error"

Blueprint.errorhandler(code, endcode=None, step=None)
Helper decorator for adding an error handler.

This is equivalent to:

route = bp.add_errorhandler(cbl, code)

Parameters

• code (int) – The error handler code to use.

• endcode (Optional[int]) – The end of the error code range to handle. Error handlers
will be added for all requests between code and endcode. If this is not provided, only one
code will be handled.

• step (Optional[int]) – The step for the error handler range.

3.4.4 Registering blueprints

If, after creating your blueprint, you attempt to navigate to /some/route you will find a 404 error living there
instead. This is because you did not register the Blueprint to your application.

app.register_blueprint(my_blueprint)

Internally, this adds a child to the root blueprint, and sets the parent of the child to the root blueprint. If you have a
blueprint that you wish to inherit from, you must register your Blueprint as a child of the Blueprint you wish to inherit
from.

3.4. Blueprints 13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

Kyoukai Documentation, Release 2.2.1

my_blueprint.add_child(my_other_blueprint)

Kyoukai.register_blueprint(child)
Registers a child blueprint to this app’s root Blueprint.

This will set up the Blueprint tree, as well as setting up the routing table when finalized.

Parameters child (Blueprint) – The child Blueprint to add. This must be an instance of
Blueprint.

Blueprint.add_child(blueprint)
Adds a Blueprint as a child of this one. This is automatically called when using another Blueprint as a parent.

Parameters blueprint (Blueprint) – The blueprint to add as a child.

Return type Blueprint

3.5 Requests and Responses

Requests and Responses are crucial parts of a HTTP framework - the request contains data that is received from the
client, and the Response contains data that is sent to the Client.

Kyoukai piggybacks off of Werkzeug for its request and response wrappers - this means that most of the request is
handled by a well tested library used in thousands of applications across the web.

3.5.1 Getting the Request

The Request object for the current request is available on request for your route functions to use.

For example, returning a JSON blob of the headers:

async def my_route(ctx: HTTPRequestContext):
headers = json.dumps(dict(ctx.request.headers))
return headers

class werkzeug.wrappers.Request
Represents a request incoming from the client.

Request.accept_charsets
List of charsets this client supports as CharsetAccept object.

Request.accept_encodings
List of encodings this client accepts. Encodings in a HTTP term are compression encodings such as gzip.
For charsets have a look at accept_charset.

Request.accept_languages
List of languages this client accepts as LanguageAccept object.

Request.accept_mimetypes
List of mimetypes this client supports as MIMEAccept object.

Request.access_route
If a forwarded header exists this is a list of all ip addresses from the client ip to the last proxy server.

Request.args
The parsed URL parameters (the part in the URL after the question mark).

14 Chapter 3. Contents:

http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.CharsetAccept
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.LanguageAccept
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.MIMEAccept

Kyoukai Documentation, Release 2.2.1

By default an ImmutableMultiDict is returned from this function. This can be changed by setting
parameter_storage_class to a different type. This might be necessary if the order of the form data
is important.

Request.authorization
The Authorization object in parsed form.

Request.base_url
Like url but without the querystring See also: trusted_hosts.

Request.cache_control
A RequestCacheControl object for the incoming cache control headers.

Request.cookies
A dict with the contents of all cookies transmitted with the request.

Request.data
Contains the incoming request data as string in case it came with a mimetype Werkzeug does not handle.

Request.files
MultiDict object containing all uploaded files. Each key in files is the name from the <input
type="file" name="">. Each value in files is a Werkzeug FileStorage object.

It basically behaves like a standard file object you know from Python, with the difference that it also has a
save() function that can store the file on the filesystem.

Note that files will only contain data if the request method was POST, PUT or PATCH and the <form>
that posted to the request had enctype="multipart/form-data". It will be empty otherwise.

See the MultiDict / FileStorage documentation for more details about the used data structure.

Request.form
The form parameters. By default an ImmutableMultiDict is returned from this function. This can be
changed by setting parameter_storage_class to a different type. This might be necessary if the
order of the form data is important.

Please keep in mind that file uploads will not end up here, but instead in the files attribute.

Changed in version 0.9: Previous to Werkzeug 0.9 this would only contain form data for POST and PUT
requests.

Request.full_path
Requested path as unicode, including the query string.

Request.headers
The headers from the WSGI environ as immutable EnvironHeaders.

Request.host
Just the host including the port if available. See also: trusted_hosts.

Request.host_url
Just the host with scheme as IRI. See also: trusted_hosts.

Request.if_match
An object containing all the etags in the If-Match header.

Return type ETags

Request.if_modified_since
The parsed If-Modified-Since header as datetime object.

Request.if_none_match
An object containing all the etags in the If-None-Match header.

3.5. Requests and Responses 15

http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.ImmutableMultiDict
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.RequestCacheControl
https://docs.python.org/3/library/stdtypes.html#dict
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.MultiDict
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.FileStorage
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.FileStorage.save
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.MultiDict
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.FileStorage
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.ImmutableMultiDict
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.EnvironHeaders
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.ETags

Kyoukai Documentation, Release 2.2.1

Return type ETags

Request.if_range
The parsed If-Range header.

New in version 0.7.

Return type IfRange

Request.if_unmodified_since
The parsed If-Unmodified-Since header as datetime object.

Request.is_secure
True if the request is secure.

Request.is_xhr
True if the request was triggered via a JavaScript XMLHttpRequest. This only works with libraries that
support the X-Requested-With header and set it to “XMLHttpRequest”. Libraries that do that are prototype,
jQuery and Mochikit and probably some more.

Request.method
The request method. (For example 'GET' or 'POST').

Request.path
Requested path as unicode. This works a bit like the regular path info in the WSGI environment but will
always include a leading slash, even if the URL root is accessed.

Request.query_string
The URL parameters as raw bytestring.

Request.range
The parsed Range header.

New in version 0.7.

Return type Range

Request.remote_addr
The remote address of the client.

Request.remote_user
If the server supports user authentication, and the script is protected, this attribute contains the username
the user has authenticated as.

Request.scheme
URL scheme (http or https).

New in version 0.7.

Request.trusted_hosts = None

Request.url
The reconstructed current URL as IRI. See also: trusted_hosts.

Request.url_charset
The charset that is assumed for URLs. Defaults to the value of charset.

New in version 0.6.

Request.values
A werkzeug.datastructures.CombinedMultiDict that combines args and form.

Request.get_data(cache=True, as_text=False, parse_form_data=False)
This reads the buffered incoming data from the client into one bytestring. By default this is cached but that
behavior can be changed by setting cache to False.

16 Chapter 3. Contents:

http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.ETags
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.IfRange
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.Range
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.CombinedMultiDict

Kyoukai Documentation, Release 2.2.1

Usually it’s a bad idea to call this method without checking the content length first as a client could send
dozens of megabytes or more to cause memory problems on the server.

Note that if the form data was already parsed this method will not return anything as form data pars-
ing does not cache the data like this method does. To implicitly invoke form data parsing function set
parse_form_data to True. When this is done the return value of this method will be an empty string if the
form parser handles the data. This generally is not necessary as if the whole data is cached (which is the
default) the form parser will used the cached data to parse the form data. Please be generally aware of
checking the content length first in any case before calling this method to avoid exhausting server memory.

If as_text is set to True the return value will be a decoded unicode string.

New in version 0.9.

3.5.2 Creating a Response

Responses are automatically created for you when you return from a route function or error handler. However, it is
possible to create them manually:

async def my_route(ctx: HTTPRequestContext):
return Response("Hello, world", status=200)

class werkzeug.wrappers.Response
Represents a response from the server to the client.

Response.__init__(response=None, status=None, headers=None, mimetype=None, con-
tent_type=None, direct_passthrough=False)

Response.data
A descriptor that calls get_data() and set_data(). This should not be used and will eventually get
deprecated.

Response.status
The HTTP Status code

Response.status_code
The HTTP Status code as number

Response.freeze()
Call this method if you want to make your response object ready for being pickled. This buffers the
generator if there is one. It will also set the Content-Length header to the length of the body.

Changed in version 0.6: The Content-Length header is now set.

Response.get_data(as_text=False)
The string representation of the request body. Whenever you call this property the request iterable is
encoded and flattened. This can lead to unwanted behavior if you stream big data.

This behavior can be disabled by setting implicit_sequence_conversion to False.

If as_text is set to True the return value will be a decoded unicode string.

New in version 0.9.

Response.set_cookie(key, value=”, max_age=None, expires=None, path=’/’, domain=None, se-
cure=False, httponly=False)

Sets a cookie. The parameters are the same as in the cookie Morsel object in the Python standard library
but it accepts unicode data, too.

Parameters

• key – the key (name) of the cookie to be set.

3.5. Requests and Responses 17

Kyoukai Documentation, Release 2.2.1

• value – the value of the cookie.

• max_age – should be a number of seconds, or None (default) if the cookie should last
only as long as the client’s browser session.

• expires – should be a datetime object or UNIX timestamp.

• path – limits the cookie to a given path, per default it will span the whole domain.

• domain – if you want to set a cross-domain cookie. For example, domain=".
example.com" will set a cookie that is readable by the domain www.example.com,
foo.example.com etc. Otherwise, a cookie will only be readable by the domain that
set it.

• secure – If True, the cookie will only be available via HTTPS

• httponly – disallow JavaScript to access the cookie. This is an extension to the cookie
standard and probably not supported by all browsers.

Response.delete_cookie(key, path=’/’, domain=None)
Delete a cookie. Fails silently if key doesn’t exist.

Parameters

• key – the key (name) of the cookie to be deleted.

• path – if the cookie that should be deleted was limited to a path, the path has to be defined
here.

• domain – if the cookie that should be deleted was limited to a domain, that domain has
to be defined here.

Response.set_data(value)
Sets a new string as response. The value set must either by a unicode or bytestring. If a unicode string is
set it’s encoded automatically to the charset of the response (utf-8 by default).

New in version 0.9.

3.5.3 Response Helpers

New in version 2.1.3.

There are some built-in helper functions to encode data in a certain form:

kyoukai.util.as_html(text, code=200, headers=None)
Returns a HTML response.

return as_html("<h1>Hel Na</h1>", code=403)

Parameters

• text (str) – The text to return.

• code (int) – The status code of the response.

• headers (Optional[dict]) – Any optional headers.

Return type Response

Returns A new werkzeug.wrappers.Response representing the HTML.

kyoukai.util.as_plaintext(text, code=200, headers=None)
Returns a plaintext response.

18 Chapter 3. Contents:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response

Kyoukai Documentation, Release 2.2.1

return as_plaintext("hel yea", code=201)

Parameters

• text (str) – The text to return.

• code (int) – The status code of the response.

• headers (Optional[dict]) – Any optional headers.

Return type Response

Returns A new werkzeug.wrappers.Response representing the text.

kyoukai.util.as_json(data, code=200, headers=None, *, json_encoder=None, **kwargs)
Returns a JSON response.

return as_json({"response": "yes", "code": 201}, code=201)

Parameters

• data (Union[dict, list]) – The data to encode.

• code (int) – The status code of the response.

• headers (Optional[dict]) – Any optional headers.

• json_encoder (Optional[JSONEncoder]) – The encoder class to use to encode.

Return type Response

Returns A new werkzeug.wrappers.Response representing the JSON.

3.6 Deploying Your App

Unlike some other frameworks, Kyoukai’s built in web server is production ready and you do not need any specific
setup to use your web application in production.

That said, if you want to get the best performance out of Kyoukai, you need to run the app with a special flag, the -O
flag.

This flag is a builtin flag to the Python interpreter, and automatically skips costly assert statements that can slow down
your app. This means you invoke the application with python -O -m asphalt.core.command run config.yml.

3.7 Advanced Routing

Kyoukai supports some advanced features of Werkzeug’s routing, such as building URLs from an endpoint automati-
cally.

3.7.1 Subdomain Support

This is a TODO, and will be implemented in a later version.

3.6. Deploying Your App 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response

Kyoukai Documentation, Release 2.2.1

3.7.2 URL Building

URL building from endpoints is supported via the usage of either HTTPRequestContext.url_for() or
Blueprint.url_for(). The former is recommended over the latter as it automatically provides the environ-
ment for the Map to bind to.

Endpoints

Endpoints for the usage in URL building are generated using a simple formula:

- take the name of the Blueprint

- take the name of the callable for the route

- combine them separated by a single dot (.)

For example, a Blueprint defined as Blueprint("api") and a route defined as def get_all_users(...)
will have the endpoint of api.get_all_users. It is possible to override the endpoint by passing endpoint= to
either Blueprint.wrap_route() or Blueprint.route() (and the route group equivalent).

Changed in version 2.2.0: Added the ability to override the endpoint for a route.

Building the URL is simple:

url = ctx.url_for("api.get_all_users")

If the same endpoint has multiple methods, pass methods to the function:

url = ctx.url_for("api.something_with_users", methods=["POST"])

To enforce external URLs only (i.e not relative), pass force_external = True:

url = ctx.url_for("api.get_all_users", force_external=True)

Finally, if your route is defined with parameters (e.g def get_user(ctx, user_id: int)):

url = ctx.url_for("api.get_all_users", user_id=1)

3.7.3 Multiple Paths For One Route

It is possible to have multiple paths for a single route by stacking the Blueprint.route() decorator repeatedly.

bp = Blueprint("something")

@bp.route("/users/<id:int>")
@bp.route("/users/<id:int>/profile")
async def handler(ctx, id):

...

Custom methods can be defined for each path, too. The methods are associated with one path, and will not affect the
methods of the other paths.

@bp.route(“/users/<id:int>”, methods=[“POST”]) @bp.route(“/users/<id:int>/profile”) # uses “GET”,
“HEAD” by default async def handler(ctx, id):

. . .

20 Chapter 3. Contents:

Kyoukai Documentation, Release 2.2.1

This can be done with route group decorators too, by stacking the route decorator on top of eachother.

Manual Mode

To manually add a new routing path to a route, you can use Route.add_path().

bp = Blueprint("something")

@bp.route("/users/<id:int>")
async def handler(ctx, id):

...

handler.add_path("/users/<id:int>/profile")

3.8 Request Hooks

Request hooks are a convenient way of performing actions before and after a request is processed by your code. There
are several types of request hooks:

• Global-level request hooks, which take action on ALL routes. These can be technically seen as root blueprint-
level hooks, since they act on the root blueprint.

• Blueprint-level request hooks, which take action at the blueprint level. These are registered on a blueprint, and
act on all routes registered to that blueprint, as well as all routes registered to children blueprints.

• Route-level request hooks, which take action on individual routes.

All hooks must complete successfully. If any hook fails, then the request will fail with a 500 Internal Server Error.

Note: Global-level hooks are registered with app.add_hook and family, but actually redirect to the root blueprint.

3.8.1 Adding a Hook

Adding a hook can be done with add_hook() or add_hook(). These take a type param and the hook function to
add.

Alternatively, you can use the helper functions:

Blueprint.before_request(func)
Convenience decorator to add a pre-request hook.

Route.before_request(func)
Convenience decorator to add a pre-request hook.

Blueprint.after_request(func)
Convenience decorator to add a post-request hook.

Route.after_request(func)
Convenience decorator to add a post-request hook.

3.8. Request Hooks 21

Kyoukai Documentation, Release 2.2.1

3.8.2 Pre-request hooks

Pre-request hooks are hooks that are fired before a request handler is invoked. They are fired in the order they are
added.

Pre-request hooks take one param: the HTTPRequestContext that the request is going to be invoked with. They
can either return the modified context, a new context, or None to use the previous context as the new one.

async def print_request(ctx: HTTPRequestContext):
print("Request for", ctx.request.path)
return ctx # can be omitted to leave `ctx` in place

3.8.3 Post-request hooks

Post-request hooks are hooks that are fired after a request is invoked. They are fired in the order they are added.

Post-request hooks take two params: The HTTPRequestContext that the request was invoked with, and the
wrapped result (NOT the final result!) of the response handler. They can either return a modified Response, or
None to use the previous Response as the new one.

async def jsonify(ctx, response):
if not isinstance(response.response, dict):

return response

r.set_data(json.dumps(response.response))
return r

3.9 Route Groups

New in version 2.1.2.

Route Groups are a way of grouping routes together into a single class, where they can all access the members of the
class. This is easier than having global shared state, and easily allows having “route” templates.

3.9.1 Creating a Route Group

All route groups descend from RouteGroup, or use RouteGroupType as the metaclass. The former uses the latter
as its metaclass, which is a shorter version.

from kyoukai.routegroup import RouteGroup, RouteGroupType

form 1, easiest form
class MyRouteGroup(RouteGroup):

...

form 2, explicit metaclass
class MyRouteGroup(metaclass=RouteGroupType):

...

Note: By default, route groups have no magic __init__. You are free to implement this in whatever way you like,
including passing parameters to it.

22 Chapter 3. Contents:

Kyoukai Documentation, Release 2.2.1

3.9.2 Adding Routes

To make your route group useful, you need to add some routes to it. The RouteGroup module includes a special
decorator that marks a route function as a new Route during instance creation, route().

This method takes the same arguments as the regular route decorator; the only difference is that it returns the
original function in the class body rather than returning a new Route object. Instead, certain attributes are set on the
new function that are picked up during scanning, such as in_group.

from kyoukai.routegroup import RouteGroup, route

class MyRouteGroup(RouteGroup):
@route("/heck", methods=("GET", "POST"))
async def heck_em_up(self, ctx: HTTPRequestContext):

return "get hecked"

This will register heck_em_up as a route on the new route group.

kyoukai.routegroup.route(url, methods=(’GET’, ’HEAD’), **kwargs)
A companion function to the RouteGroup class. This follows Blueprint.route() in terms of arguments,
and marks a function as a route inside the class.

This will return the original function, with some attributes attached:

• in_group: Marks the function as in the route group.

• rg_delegate: Internal. The type of function inside the group this is.

• route_kwargs: Keyword arguments to provide to wrap_route.

• route_url: The routing URL to provide to add_route.

• route_methods: The methods for the route.

• route_hooks: A defaultdict of route-specific hooks.

Additionally, the following methods are added.

• hook: A decorator that adds a hook of type type_.

• before_request: A decorator that adds a pre hook.

• after_request: A decorator that adds a post hook.

New in version 2.1.1.

Changed in version 2.1.3: Added the ability to add route-specific hooks.

Changed in version 2.2.0: Now accepts an already edited function as the function to decorate - this will add a
new routing url and method pair to the Route.routes.

Changed in version 2.2.2: Default methods changed to GET and HEAD.

Parameters

• url (str) – The routing URL of the route.

• methods (Iterable[str]) – An iterable of methods for the route.

3.9.3 Error Handlers

New in version 2.1.3.

Route groups can also have group-specific error handlers, using errorhandler().

3.9. Route Groups 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

Kyoukai Documentation, Release 2.2.1

@errorhandler(500)
async def handle_errors(self, ctx, exc):

...

kyoukai.routegroup.errorhandler(startcode, endcode=None, step=None)
A companion function to the RouteGroup class. This follows Blueprint.errorhandler() in terms of
arguments.

Parameters

• startcode (int) – The error code to handle, for example 404. This also represents the
start of an error range, if endcode is not None.

• endcode (Optional[int]) – The end of the error code range to handle. Error handlers
will be added for all requests between startcode and endcode.

• step (Optional[int]) – The step for the error handler range.

3.9.4 Request Hooks

New in version 2.1.3.

Route groups can have both Blueprint-specific error handlers, and route-specific error handlers, using the helper func-
tions.

For Blueprint-specific, you can use hook() (or, better, aliases before_request() and after_request()).

@before_request
async def before_req(self, ctx):

...

Adding route-specific hooks is possible by calling @route.hook on the newly wrapped function. This is achieved
by setting a special decorator function on the function object modified by the route decorator.

@heck_em_up.before_req
async def whatever(self, ctx):

...

kyoukai.routegroup.hook(type_)
Marks a function as a hook.

Parameters type (str) – The type of hook to mark.

kyoukai.routegroup.before_request(func)
Helper decorator to mark a function as a pre-request hook.

kyoukai.routegroup.after_request(func)
Helper decorator to mark a function as a post-request hook.

@func.hook(type_: str)
Marks a function as a route-specific hook.

Parameters type – The type of hook to add.

@func.before_request
Marks a function as a before-request hook.

@func.after_request
Marks a function as an after-request hook.

24 Chapter 3. Contents:

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Kyoukai Documentation, Release 2.2.1

3.9.5 Registering the Group

Adding the group to your app is as simple as instantiating the group and calling Blueprint.
add_route_group() with the instance.

rg = MyRouteGroup()
app.root.add_route_group(rg)

Of course, an alias for this exists on Kyoukai which redirects to the root blueprint.

Blueprint.add_route_group(group)
Adds a route group to the current Blueprint.

Parameters group (RouteGroup) – The RouteGroup to add.

3.9.6 Customizing the Blueprint

Route groups work by using an underlying Blueprint that is populated with all the routes from the class body during
instantiation. The Blueprint can be customized by passing arguments in the class definition to the metaclass, which
are stored and later used to create the new Blueprint object.

class MyRouteGroup(RouteGroup, prefix="/api/v1")
...

To get the blueprint object from a RouteGroup instance, you can use get_rg_bp().

kyoukai.routegroup.get_rg_bp(group)
Gets the Blueprint created from a RouteGroup.

3.10 Host Matching

New in version 2.1.3.

Kyoukai comes with built-in support for Werkzeug host matching:

enable host matching in the tree
this needs to be set on the root blueprint for the blueprint tree
app = Kyoukai("my_website", host_matching=True)

set a host on a sub-blueprint
all sub-blueprints of `bp` will now use the host `api.myname.me`
bp = Blueprint("api", host="api.myname.me")

As shown above, host matching is easy to enable, requiring only two changes.

• host_matching MUST be set on the root Blueprint (passed here via the app) - this will enable host matching
when building the final map.

• host is passed into the Blueprint constructor, which specifies the host that will be matched for each route in
this Blueprint.

In the example above, all routes registered to bp will only match if the Host header is api.myname.me. However,
all routes registered to other Blueprints will match on any hosts.

3.10. Host Matching 25

Kyoukai Documentation, Release 2.2.1

3.10.1 Relation to the Tree

Children Blueprints will copy their host from the parent, unless overridden. So, for example:

only host match ``myname.me``
app = Kyoukai("my_website", host="myname.me")

bp1 will only obey requests from `myname.me`
bp1 = Blueprint("something")
app.register_blueprint(bp1)

bp2 will only obey requests from `something.myname.me`, overriding the global host
→˓match
bp2 = Blueprint("something else", host="something.myname.me")
app.register_blueprint(bp2)

bp3 however will inherit its parents host matching (bp2)
bp3 = Blueprint("something finally")
bp2.add_child(bp3)

3.11 HTTPS Support

New in version 2.1.

Kyoukai’s built in web server comes with native TLS support with secure defaults. Enabling it is as simple as creating
a new block in the config file:

The SSL configuration for the built-in webserver
ssl:

Is SSL enabled?
If this is False, the certfile and keyfile will not be loaded.
enabled: true

The public key certificate for the webserver to use.
ssl_certfile: server.crt

The private keyfile for the webserver to use.
ssl_keyfile: server.key

HTTPS will then automatically be enabled for this connection.

3.11.1 HTTP and HTTPS multiplexing

This is not currently supported.

3.12 HTTP/2 Support

New in version 2.1.0.

Kyoukai comes with built in support for HTTP/2, thanks to to the H2 library.

Enabling HTTP2 requires:

• TLS/SSL to be enabled

26 Chapter 3. Contents:

Kyoukai Documentation, Release 2.2.1

• h2 to be installed

• The http2 key in the config to be True, or manual switching to be enabled

3.12.1 Automatic switching

Kyoukai supports automatically upgrading to HTTP/2 via ALPN/NPN protocols (the default for making new connec-
tions over TLS) or with plain old h2c.

To enable automatic upgrade, add the http2 key to your config file, under the kyoukai component, like so:

Enables automatic HTTP/2 connection switching.
This will switch to the HTTP/2 protocol parser when a connection is created.
http2: true

Now, when connecting over TLS (or HTTP/1.1 with h2c) the connection will be automatically upgraded to a HTTP/2
connection.

3.12.2 Manual switching

It is possible to enforce HTTP/2 only, or otherwise manual switching, with the usage of H2KyoukaiProtocol.

To switch to this component, change KyoukaiComponent to H2KyoukaiComponent in your application com-
ponent container like so:

self.add_component('kyoukai', H2KyoukaiComponent, ip="127.0.0.1", port=4444,
app=app)

3.12.3 API Ref

class kyoukai.backends.http2.H2KyoukaiComponent(app, ssl_keyfile: str, ssl_certfile: str, *,
ip: str = ’127.0.0.1’, port: int = 4444)

Bases: kyoukai.asphalt.KyoukaiBaseComponent

A component subclass that creates H2KyoukaiProtocol instances.

Creates a new HTTP/2 SSL-based context.

This will use the HTTP/2 protocol, disabling HTTP/1.1 support for this port. It is possible to run two servers
side-by-side, one HTTP/2 and one HTTP/1.1, if you run them on different ports.

get_server_name()

Returns The server name of this app.

class kyoukai.backends.http2.H2KyoukaiProtocol(component, parent_context: as-
phalt.core.context.Context)

Bases: asyncio.protocols.Protocol

The base protocol for Kyoukai, using H2.

raw_write(data)
Writes to the underlying transport.

connection_made(transport)
Called when a connection is made.

Parameters transport (WriteTransport) – The transport made by the connection.

3.12. HTTP/2 Support 27

Kyoukai Documentation, Release 2.2.1

data_received(data)
Called when data is received from the underlying socket.

_processing_done(environ, stream_id)
Callback for when processing is done on a request.

coroutine sending_loop(stream_id)
This loop continues sending data to the client as it comes off of the queue.

request_received(event)
Called when a request has been received.

window_opened(event)
Called when a control flow window has opened again.

receive_data(event)
Called when a request has data that has been received.

stream_complete(event)
Called when a stream is complete.

This will invoke Kyoukai, which will handle the request.

close(error_code=0)
Called to terminate the connection for some reason.

This will close the underlying transport.

eof_received()
Called when the other end calls write_eof() or equivalent.

If this returns a false value (including None), the transport will close itself. If it returns a true value, closing
the transport is up to the protocol.

pause_writing()
Called when the transport’s buffer goes over the high-water mark.

Pause and resume calls are paired – pause_writing() is called once when the buffer goes strictly over
the high-water mark (even if subsequent writes increases the buffer size even more), and eventually re-
sume_writing() is called once when the buffer size reaches the low-water mark.

Note that if the buffer size equals the high-water mark, pause_writing() is not called – it must go strictly
over. Conversely, resume_writing() is called when the buffer size is equal or lower than the low-water
mark. These end conditions are important to ensure that things go as expected when either mark is zero.

NOTE: This is the only Protocol callback that is not called through EventLoop.call_soon() – if it were,
it would have no effect when it’s most needed (when the app keeps writing without yielding until
pause_writing() is called).

resume_writing()
Called when the transport’s buffer drains below the low-water mark.

See pause_writing() for details.

class kyoukai.backends.http2.H2State(headers: list, stream_id, protocol: ky-
oukai.backends.http2.H2KyoukaiProtocol)

Bases: object

A temporary class that is used to store request data for a HTTP/2 connection.

This is also passed to the Werkzeug request to emit data.

insert_data(data)
Writes data from the stream into the body.

28 Chapter 3. Contents:

https://docs.python.org/3/library/functions.html#object

Kyoukai Documentation, Release 2.2.1

coroutine read_async(to_end=True)
There’s no good way to do this - WSGI isn’t async, after all.

However, you can use read_async on the Werkzeug request (which we subclass) to wait until the request
has finished streaming.

Parameters to_end – If to_end is specified, then read until the end of the request. Other-
wise, it will read one data chunk.

read(size=-1)
Reads data from the request until it’s all done.

Parameters size (int) – The maximum amount of data to receive.

Return type bytes

get_chunk()
Gets a chunk of data from the queue.

Return type bytes

start_response(status, headers, exc_info=None)
The start_response callable that is plugged into a Werkzeug response.

get_response_headers()
Called by the protocol once the Response is writable to submit the request to the HTTP/2 state machine.

3.13 Running Under gunicorn

The inbuilt HTTP server works “well enough” for nearly all purposes that can be thought of, including automatic
HTTP/2 negotiation. However, you may wish to use a different WSGI server, such as gunicorn. Kyoukai comes with
an adaptor that can be used for this purpose.

3.13.1 The Adapter

The adapter is a replacement for the normal HTTP server, and as such will take over the HTTP parsing from the
httptools backend, using aiohttp, via the gaiohttp worker.

Creating the adaptor is incredibly simple:

from kyoukai.backends.gunicorn import GunicornAdapter

make sure to have an app object already provided
adapter = GunicornAdapter(my_app_object)

expose the ``run_application`` method for gunicorn to run
application = adapter.run_application

Running gunicorn requires usage of the right worker, which is the gaiohttp worker:

$ gunicorn -k gaiohttp my_app:application

Your Kyoukai app will now be running under gunicorn.

3.13. Running Under gunicorn 29

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://aiohttp.readthedocs.org/en/stable/

Kyoukai Documentation, Release 2.2.1

3.13.2 Asphalt Configuration

It is also possible to run your Asphalt configuration via gunicorn with the usage of GunicornAdapter.
from_asphalt_config():

make sure ``run_server`` is False in your config file!
adapter = GunicornAdapter.from_asphalt_config("config.yml")
application = adapter.run_application

30 Chapter 3. Contents:

CHAPTER 4

Automatically generated API documentation

This API documentation is automatically generated by the Sphinx autosummary module.

4.1 Kyoukai Autodoc

This is automatically generated API documentation for the kyoukai module. Kyoukai is an async web framework
for Python 3.5 and above.

app The core application.
backends Various backends that interface with the Kyoukai applica-

tion.
asphalt Asphalt wrappers for Kyoukai.
blueprint A blueprint is a container - a collection of routes.
route Routes are wrapped function objects that are called upon a

HTTP request.
routegroup Route groups are classes that allow you to group a set of

routes together.
testing Testing helpers for Kyoukai.
util Misc utilities for usage inside the framework.

4.1.1 kyoukai.app

The core application.

Classes

31

Kyoukai Documentation, Release 2.2.1

Kyoukai(application_name: str, *, . . .) The Kyoukai type is the core of the Kyoukai framework,
and the core of your web application based upon the Ky-
oukai framework.

class kyoukai.app.Kyoukai(application_name: str, *, server_name: str = None, **kwargs)
Bases: object

The Kyoukai type is the core of the Kyoukai framework, and the core of your web application based upon the
Kyoukai framework. It acts as a central router and request processor that takes in requests from the protocols
and returns responses.

The application name is currently unused, but it is good practice to set it correctly anyway in case it is used in
future editions of Kyoukai.

You normally create an application instance inside your component file, like so:

from kyoukai.app import Kyoukai

... # setup code

kyk = Kyoukai("my_app")
kyk.register_blueprint(whatever)

... # other setup

class MyContainer(ContainerComponent):
async def start(self, ctx):

self.add_component('kyoukai', KyoukaiComponent, ip="127.0.0.1", port=4444,
app="app:app")

Of course, you can also embed Kyoukai inside another app, by awaiting Kyoukai.start().

Parameters

• application_name (str) – The name of the application that is being created. This is
passed to the Blueprint being created as the root blueprint.

This is used in url_for, for example, to get the endpoint of routes registered to the root
Blueprint.

• server_name (Optional[str]) – Keyword-only. The SERVER_NAME to use inside
the fake WSGI environment created for url_for, if applicable.

• host_matching – Should host matching be enabled? This will be implicitly True if
host is not None.

• host – The host used for host matching, to be passed to the root Blueprint. By default, no
host is used, so all hosts are matched on the root Blueprint.

• application_root – Keyword-only. The APPLICATION_ROOT to use inside the fake
WSGI environment created for url_for, if applicable.

• loop – Keyword-only. The asyncio event loop to use for this app. If no loop is specified it,
will be automatically fetched using asyncio.get_event_loop().

• request_class – Keyword-only. The custom request class to instantiate requests with.

• response_class – Keyword-only. The custom response class to instantiate responses
with.

32 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Kyoukai Documentation, Release 2.2.1

• context_class – Keyword-only. The Context subclass to use when creating a con-
text. Defaults to HTTPRequestContext.

request_class
The class of request to spawn every request. This should be a subclass of werkzeug.wrappers.
Request. You can override this by passing request_class as a keyword argument to the app.

alias of Request

response_class
The class of response to wrap automatically. This should be a subclass of werkzeug.wrappers.
Response. You can override this by passing response_class as a keyword argument to the app.

alias of Response

context_class = None
The context class.

root

Return type Blueprint

Returns The root Blueprint for the routing tree.

register_blueprint(child)
Registers a child blueprint to this app’s root Blueprint.

This will set up the Blueprint tree, as well as setting up the routing table when finalized.

Parameters child (Blueprint) – The child Blueprint to add. This must be an instance of
Blueprint.

finalize(**map_options)
Finalizes the app and blueprints.

This will calculate the current werkzeug.routing.Map which is required for routing to work.

Parameters map_options – The options to pass to the Map for routing.

Return type Map

log_route(request, code)
Logs a route invocation.

Parameters

• request (Request) – The request produced.

• code (int) – The response code of the route.

coroutine handle_httpexception(self, ctx, exception, environ=None)
Handle a HTTP Exception.

Parameters

• ctx (HTTPRequestContext) – The context of the request.

• exception (HTTPException) – The HTTPException to handle.

• environ (Optional[dict]) – The fake WSGI environment.

Return type Response

Returns A werkzeug.wrappers.Response that handles this response.

4.1. Kyoukai Autodoc 33

http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
https://docs.python.org/3/library/functions.html#int
http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response

Kyoukai Documentation, Release 2.2.1

coroutine process_request(self, request, parent_context)
Processes a Request and returns a Response object.

This is the main processing method of Kyoukai, and is meant to be used by one of the HTTP server
backends, and not by client code.

Parameters

• request (Request) – The werkzeug.wrappers.Request object to process. A
new HTTPRequestContext will be provided to wrap this request inside of to client
code.

• parent_context (Context) – The asphalt.core.Context that is the parent
context for this particular app. It will be used as the parent for the HTTPRequestContext.

Return type Response

Returns A werkzeug.wrappers.Response object that can be written to the client as a
response.

coroutine start(self, ip=’127.0.0.1’, port=4444, *, component=None, base_context=None)
Runs the Kyoukai component asynchronously.

This will bypass Asphalt’s default runner, and allow you to run your app easily inside something else, for
example.

Parameters

• ip (str) – The IP of the built-in server.

• port (int) – The port of the built-in server.

• component – The component to start the app with. This should be an instance of
KyoukaiComponent.

• base_context (Optional[Context]) – The base context that the HTTPRequest-
Context should be started with.

run(ip=’127.0.0.1’, port=4444, *, component=None)
Runs the Kyoukai server from within your code.

This is not normally invoked - instead Asphalt should invoke the Kyoukai component. However, this is
here for convenience.

4.1.2 kyoukai.backends

Various backends that interface with the Kyoukai application.

httptools_ A high-performance HTTP/1.1 backend for the Kyoukai
webserver using httptools.

http2 A HTTP/2 interface to Kyoukai.

kyoukai.backends.httptools_

A high-performance HTTP/1.1 backend for the Kyoukai webserver using httptools.

34 Chapter 4. Automatically generated API documentation

http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://github.com/MagicStack/httptools
https://github.com/MagicStack/httptools

Kyoukai Documentation, Release 2.2.1

Classes

KyoukaiProtocol(component, . . .) The base protocol for Kyoukai using httptools for a
HTTP/1.0 or HTTP/1.1 interface.

class kyoukai.backends.httptools_.KyoukaiProtocol(component, parent_context:
asphalt.core.context.Context,
server_ip: str, server_port: int)

Bases: asyncio.protocols.Protocol

The base protocol for Kyoukai using httptools for a HTTP/1.0 or HTTP/1.1 interface.

Parameters

• component – The kyoukai.asphalt.KyoukaiComponent associated with this re-
quest.

• parent_context (Context) – The parent context for this request. A new HTTPRe-
questContext will be derived from this.

replace(other, *args, **kwargs)
Replaces our type with the other.

Return type type

on_message_begin()
Called when a message begins.

on_header(name, value)
Called when a header has been received.

Parameters

• name (bytes) – The name of the header.

• value (bytes) – The value of the header.

on_headers_complete()
Called when the headers have been completely sent.

on_body(body)
Called when part of the body has been received.

Parameters body (bytes) – The body text.

on_url(url)
Called when a URL is received from the client.

on_message_complete()
Called when a message is complete. This creates the worker task which will begin processing the request.

connection_made(transport)
Called when a connection is made via asyncio.

Parameters transport (WriteTransport) – The transport this is using.

data_received(data)
Called when data is received into the connection.

handle_parser_exception(exc)
Handles an exception when parsing.

4.1. Kyoukai Autodoc 35

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Kyoukai Documentation, Release 2.2.1

This will not call into the app (hence why it is a normal function, and not a coroutine). It will also close
the connection when it’s done.

Parameters exc (Exception) – The exception to handle.

coroutine _wait()
The main core of the protocol.

This constructs a new Werkzeug request from the headers.

write_response(response, fake_environ)
Writes a Werkzeug response to the transport.

write(data)
Writes data to the socket.

raw_write(data)
Writes data to the transport.

_raw_write(data)
Does a raw write to the underlying transport, if we can.

Parameters data (bytes) – The data to write.

eof_received()
Called when the other end calls write_eof() or equivalent.

If this returns a false value (including None), the transport will close itself. If it returns a true value, closing
the transport is up to the protocol.

pause_writing()
Called when the transport’s buffer goes over the high-water mark.

Pause and resume calls are paired – pause_writing() is called once when the buffer goes strictly over
the high-water mark (even if subsequent writes increases the buffer size even more), and eventually re-
sume_writing() is called once when the buffer size reaches the low-water mark.

Note that if the buffer size equals the high-water mark, pause_writing() is not called – it must go strictly
over. Conversely, resume_writing() is called when the buffer size is equal or lower than the low-water
mark. These end conditions are important to ensure that things go as expected when either mark is zero.

NOTE: This is the only Protocol callback that is not called through EventLoop.call_soon() – if it were,
it would have no effect when it’s most needed (when the app keeps writing without yielding until
pause_writing() is called).

resume_writing()
Called when the transport’s buffer drains below the low-water mark.

See pause_writing() for details.

kyoukai.backends.http2

A HTTP/2 interface to Kyoukai.

This uses https://python-hyper.org/projects/h2/en/stable/asyncio-example.html as a reference and a base. Massive
thanks to the authors of this page.

This server has some notable pitfalls:

• It ignores any priority data that is sent by the client.

• It is not paticularly fast (unbenchmarked, but it can be assumed to be slower than the httptools backend.)

• It does not fully implement all events.

36 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#bytes
https://python-hyper.org/projects/h2/en/stable/asyncio-example.html

Kyoukai Documentation, Release 2.2.1

Additionally, this server is untested - it can and probably will fail horribly in production. Use with caution :)

Functions

create_wsgi_environment(r) Creates a new WSGI environment from the RequestData
provided.

get_header(headers, name) Gets a header from the list of headers, or None if it doesn’t
exist.

Classes

H2KyoukaiComponent(app, ssl_keyfile: str, . . .) A component subclass that creates H2KyoukaiProtocol in-
stances.

H2KyoukaiProtocol(component, . . .) The base protocol for Kyoukai, using H2.
H2State(headers: list, stream_id, . . .) A temporary class that is used to store request data for a

HTTP/2 connection.

kyoukai.backends.http2.get_header(headers, name)
Gets a header from the list of headers, or None if it doesn’t exist.

Return type str

kyoukai.backends.http2.create_wsgi_environment(r)
Creates a new WSGI environment from the RequestData provided.

Return type MultiDict

class kyoukai.backends.http2.H2State(headers: list, stream_id, protocol: ky-
oukai.backends.http2.H2KyoukaiProtocol)

Bases: object

A temporary class that is used to store request data for a HTTP/2 connection.

This is also passed to the Werkzeug request to emit data.

insert_data(data)
Writes data from the stream into the body.

coroutine read_async(to_end=True)
There’s no good way to do this - WSGI isn’t async, after all.

However, you can use read_async on the Werkzeug request (which we subclass) to wait until the request
has finished streaming.

Parameters to_end – If to_end is specified, then read until the end of the request. Other-
wise, it will read one data chunk.

read(size=-1)
Reads data from the request until it’s all done.

Parameters size (int) – The maximum amount of data to receive.

Return type bytes

get_chunk()
Gets a chunk of data from the queue.

Return type bytes

4.1. Kyoukai Autodoc 37

https://docs.python.org/3/library/stdtypes.html#str
http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.MultiDict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Kyoukai Documentation, Release 2.2.1

start_response(status, headers, exc_info=None)
The start_response callable that is plugged into a Werkzeug response.

get_response_headers()
Called by the protocol once the Response is writable to submit the request to the HTTP/2 state machine.

class kyoukai.backends.http2.H2KyoukaiComponent(app, ssl_keyfile: str, ssl_certfile: str, *,
ip: str = ’127.0.0.1’, port: int = 4444)

Bases: kyoukai.asphalt.KyoukaiBaseComponent

A component subclass that creates H2KyoukaiProtocol instances.

Creates a new HTTP/2 SSL-based context.

This will use the HTTP/2 protocol, disabling HTTP/1.1 support for this port. It is possible to run two servers
side-by-side, one HTTP/2 and one HTTP/1.1, if you run them on different ports.

get_server_name()

Returns The server name of this app.

class kyoukai.backends.http2.H2KyoukaiProtocol(component, parent_context: as-
phalt.core.context.Context)

Bases: asyncio.protocols.Protocol

The base protocol for Kyoukai, using H2.

raw_write(data)
Writes to the underlying transport.

connection_made(transport)
Called when a connection is made.

Parameters transport (WriteTransport) – The transport made by the connection.

data_received(data)
Called when data is received from the underlying socket.

_processing_done(environ, stream_id)
Callback for when processing is done on a request.

coroutine sending_loop(stream_id)
This loop continues sending data to the client as it comes off of the queue.

request_received(event)
Called when a request has been received.

window_opened(event)
Called when a control flow window has opened again.

receive_data(event)
Called when a request has data that has been received.

stream_complete(event)
Called when a stream is complete.

This will invoke Kyoukai, which will handle the request.

close(error_code=0)
Called to terminate the connection for some reason.

This will close the underlying transport.

eof_received()
Called when the other end calls write_eof() or equivalent.

38 Chapter 4. Automatically generated API documentation

Kyoukai Documentation, Release 2.2.1

If this returns a false value (including None), the transport will close itself. If it returns a true value, closing
the transport is up to the protocol.

pause_writing()
Called when the transport’s buffer goes over the high-water mark.

Pause and resume calls are paired – pause_writing() is called once when the buffer goes strictly over
the high-water mark (even if subsequent writes increases the buffer size even more), and eventually re-
sume_writing() is called once when the buffer size reaches the low-water mark.

Note that if the buffer size equals the high-water mark, pause_writing() is not called – it must go strictly
over. Conversely, resume_writing() is called when the buffer size is equal or lower than the low-water
mark. These end conditions are important to ensure that things go as expected when either mark is zero.

NOTE: This is the only Protocol callback that is not called through EventLoop.call_soon() – if it were,
it would have no effect when it’s most needed (when the app keeps writing without yielding until
pause_writing() is called).

resume_writing()
Called when the transport’s buffer drains below the low-water mark.

See pause_writing() for details.

4.1.3 kyoukai.asphalt

Asphalt wrappers for Kyoukai.

Classes

ConnectionLostEvent(source, topic, *, protocol) Dispatched when a connection is lost from the server.
ConnectionMadeEvent(source, topic, *, protocol) Dispatched when a connection is made to the server.
CtxEvent(source, topic, *, . . .)
HTTPRequestContext(. . .) The context subclass passed to all requests within Kyoukai.
KyoukaiBaseComponent(app, ip: str = , . . .) The base class for any component used by Kyoukai.
KyoukaiComponent(app, ip: str = , . . .) A component for Kyoukai.
RouteInvokedEvent(source, topic, *, . . .) Dispatched when a route is invoked.
RouteMatchedEvent(source, topic, *, . . .) Dispatched when a route is matched.
RouteReturnedEvent(source, topic, *, ctx, . . .) Dispatched after a route has returned.

class kyoukai.asphalt.ConnectionMadeEvent(source, topic, *, protocol)
Bases: asphalt.core.event.Event

Dispatched when a connection is made to the server.

This does NOT fire when using WSGI workers.

This has the protocol as the protocol attribute.

utc_timestamp
Return a timezone aware datetime corresponding to the time variable, using the UTC timezone.

Return type datetime

class kyoukai.asphalt.ConnectionLostEvent(source, topic, *, protocol)
Bases: kyoukai.asphalt.ConnectionMadeEvent

Dispatched when a connection is lost from the server.

4.1. Kyoukai Autodoc 39

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Kyoukai Documentation, Release 2.2.1

This does NOT fire when using WSGI workers.

This has the protocol as the protocol attribute.

utc_timestamp
Return a timezone aware datetime corresponding to the time variable, using the UTC timezone.

Return type datetime

class kyoukai.asphalt.RouteMatchedEvent(source, topic, *, ctx: ky-
oukai.asphalt.HTTPRequestContext)

Bases: kyoukai.asphalt.CtxEvent

Dispatched when a route is matched.

This has the context as the ctx attribute, and the route can be accessed via ctx.route.

utc_timestamp
Return a timezone aware datetime corresponding to the time variable, using the UTC timezone.

Return type datetime

class kyoukai.asphalt.RouteInvokedEvent(source, topic, *, ctx: ky-
oukai.asphalt.HTTPRequestContext)

Bases: kyoukai.asphalt.CtxEvent

Dispatched when a route is invoked.

This has the context as the ctx attribute.

utc_timestamp
Return a timezone aware datetime corresponding to the time variable, using the UTC timezone.

Return type datetime

class kyoukai.asphalt.RouteReturnedEvent(source, topic, *, ctx, result:
werkzeug.wrappers.Response)

Bases: kyoukai.asphalt.CtxEvent

Dispatched after a route has returned.

This has the context as the ctx attribute and the response as the result attribute.

utc_timestamp
Return a timezone aware datetime corresponding to the time variable, using the UTC timezone.

Return type datetime

class kyoukai.asphalt.KyoukaiBaseComponent(app, ip: str = ’127.0.0.1’, port: int = 4444,
**cfg)

Bases: asphalt.core.component.Component

The base class for any component used by Kyoukai.

This one does not create a Server instance; it should be used when you are using a different HTTP server
backend.

app = None
The application object for a this component.

ip = None
The IP address to boot the server on.

port = None
The port to boot the server on.

40 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Kyoukai Documentation, Release 2.2.1

cfg = None
The config file to use.

server = None
The asyncio.Server instance that is serving us today.

base_context = None
The base context for this server.

backend = None
The backend to use for the HTTP server.

coroutine start(self, ctx)
Overridden in subclasses to spawn a new server.

get_server_name()

Returns The server name of this app.

get_protocol(ctx, serv_info)
Gets the protocol to use for this webserver.

class kyoukai.asphalt.KyoukaiComponent(app, ip: str = ’127.0.0.1’, port: int = 4444, **cfg)
Bases: kyoukai.asphalt.KyoukaiBaseComponent

A component for Kyoukai. This includes the built-in HTTP server.

Changed in version 2.2: Passing run_server as False will not run the inbuilt web server.

Creates a new component.

Parameters

• app – The application object to use. This can either be the real application object, or a
string that resolves to a reference for the real application object.

• ip (str) – If using the built-in HTTP server, the IP to bind to.

• port (int) – If using the built-in HTTP server, the port to bind to.

• cfg – Additional configuration.

get_server_name()

Returns The server name of this app.

coroutine start(self, ctx)
Starts the webserver if required.

Parameters ctx (Context) – The base context.

get_protocol(ctx, serv_info)
Gets the protocol to use for this webserver.

class kyoukai.asphalt.HTTPRequestContext(parent: asphalt.core.context.Context, request:
werkzeug.wrappers.Request)

Bases: asphalt.core.context.Context

The context subclass passed to all requests within Kyoukai.

app = None
The Kyoukai object this request is handling.

request = None
The werkzeug.wrappers.Request object this request is handling.

4.1. Kyoukai Autodoc 41

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request

Kyoukai Documentation, Release 2.2.1

params = None
The route parameters for this request. Usually contained by the routing URL.

route = None
The Route object this request is for.

bp = None
The Blueprint object this request is for.

rule = None
The werkzeug.routing.Rule object associated with this request.

environ = None
The WSGI environment for this request.

proto = None
The asyncio.Protocol protocol handling this connection.

add_resource(value, name=’default’, context_attr=None, types=())
Add a resource to this context.

This will cause a resource_added event to be dispatched.

Parameters

• value – the actual resource value

• name (str) – name of this resource (unique among all its registered types within a single
context)

• context_attr (Optional[str]) – name of the context attribute this resource will be
accessible as

• types (Union[type, Sequence[type]]) – type(s) to register the resource as (omit to
use the type of value)

Raises asphalt.core.context.ResourceConflict – if the resource conflicts with
an existing one in any way

Return type None

add_resource_factory(factory_callback, types, name=’default’, context_attr=None)
Add a resource factory to this context.

This will cause a resource_added event to be dispatched.

A resource factory is a callable that generates a “contextual” resource when it is requested by either using
any of the methods get_resource(), require_resource() or request_resource() or its
context attribute is accessed.

When a new resource is created in this manner, it is always bound to the context through it was requested,
regardless of where in the chain the factory itself was added to.

Parameters

• factory_callback (Callable[[Context], Any]) – a (non-coroutine) callable that
takes a context instance as argument and returns a tuple of (resource object, teardown
callback)

• types (Union[type, Sequence[Type[+CT_co]]]) – one or more types to register the
generated resource as on the target context

• name (str) – name of the resource that will be created in the target context

42 Chapter 4. Automatically generated API documentation

http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Rule
https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#str

Kyoukai Documentation, Release 2.2.1

• context_attr (Optional[str]) – name of the context attribute the created resource
will be accessible as

Raises asphalt.core.context.ResourceConflict – if there is an existing resource
factory for the given type/name combinations or the given context variable

Return type None

add_teardown_callback(callback, pass_exception=False)
Add a callback to be called when this context closes.

This is intended for cleanup of resources, and the list of callbacks is processed in the reverse order in which
they were added, so the last added callback will be called first.

The callback may return an awaitable. If it does, the awaitable is awaited on before calling any further
callbacks.

Parameters

• callback (Callable) – a callable that is called with either no arguments or with the
exception that ended this context, based on the value of pass_exception

• pass_exception (bool) – True to pass the callback the exception that ended this
context (or None if the context ended cleanly)

Return type None

call_async(func, *args, **kwargs)
Call the given callable in the event loop thread.

This method lets you call asynchronous code from a worker thread. Do not use it from within the event
loop thread.

If the callable returns an awaitable, it is resolved before returning to the caller.

Parameters

• func (Callable) – a regular function or a coroutine function

• args – positional arguments to call the callable with

• kwargs – keyword arguments to call the callable with

Returns the return value of the call

call_in_executor(func, *args, executor=None, **kwargs)
Call the given callable in an executor.

Parameters

• func (Callable) – the callable to call

• args – positional arguments to call the callable with

• executor (Union[Executor, str, None]) – either an Executor instance, the re-
source name of one or None to use the event loop’s default executor

• kwargs – keyword arguments to call the callable with

Return type Awaitable[+T_co]

Returns an awaitable that resolves to the return value of the call

coroutine close(self, exception=None)
Close this context and call any necessary resource teardown callbacks.

4.1. Kyoukai Autodoc 43

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
https://docs.python.org/3/library/typing.html#typing.Awaitable

Kyoukai Documentation, Release 2.2.1

If a teardown callback returns an awaitable, the return value is awaited on before calling any further
teardown callbacks.

All callbacks will be processed, even if some of them raise exceptions. If at least one callback raised an
error, this method will raise a TeardownError at the end.

After this method has been called, resources can no longer be requested or published on this context.

Parameters exception (Optional[BaseException]) – the exception, if any, that
caused this context to be closed

Raises TeardownError – if one or more teardown callbacks raise an exception

Return type None

closed
Return True if the context has been closed, False otherwise.

Return type bool

context_chain
Return a list of contexts starting from this one, its parent and so on.

Return type List[Context]

get_resource(type, name=’default’)
Look up a resource in the chain of contexts.

Parameters

• type (type) – type of the requested resource

• name (str) – name of the requested resource

Returns the requested resource, or None if none was available

loop
Return the event loop associated with this context.

Return type AbstractEventLoop

parent
Return the parent context, or None if there is no parent.

Return type Optional[Context]

coroutine request_resource(self, type, name=’default’)
Look up a resource in the chain of contexts.

This is like get_resource() except that if the resource is not already available, it will wait for one to
become available.

Parameters

• type (type) – type of the requested resource

• name (str) – name of the requested resource

Returns the requested resource

require_resource(type, name=’default’)
Look up a resource in the chain of contexts and raise an exception if it is not found.

This is like get_resource() except that instead of returning None when a resource is not found, it
will raise ResourceNotFound.

Parameters

44 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str

Kyoukai Documentation, Release 2.2.1

• type (type) – type of the requested resource

• name (str) – name of the requested resource

Returns the requested resource

Raises asphalt.core.context.ResourceNotFound – if a resource of the given type
and name was not found

threadpool(executor=None)
Return an asynchronous context manager that runs the block in a (thread pool) executor.

Parameters executor (Union[Executor, str, None]) – either an Executor instance,
the resource name of one or None to use the event loop’s default executor

Returns an asynchronous context manager

url_for(endpoint, *, method=None, **kwargs)
A context-local version of url_for.

For more information, see the documentation on url_for().

4.1.4 kyoukai.blueprint

A blueprint is a container - a collection of routes.

Kyoukai uses Blueprints to create a routing tree - a tree of blueprints that are used to collect routes together and match
routes easily.

Classes

Blueprint(name: str, . . .) A Blueprint is a “route container” - it contains 0 to N routes,
and 0 to N child Blueprints that inherit from the parent.

class kyoukai.blueprint.Blueprint(name: str, parent: typ-
ing.Union[kyoukai.blueprint.Blueprint, NoneType] =
None, prefix: str = ”, *, host_matching: bool = False, host:
str = None)

Bases: object

A Blueprint is a “route container” - it contains 0 to N routes, and 0 to N child Blueprints that inherit from the
parent.

Parameters

• name (str) – The name of this Blueprint. This is used when generating endpoints in the
finalize stage.

• parent (Optional[Blueprint]) – The parent of this Blueprint. Parent blueprints will
gather the routes of their children, and return a giant werkzeug.routing.Map object
that contains all of the route maps in the children

• prefix (str) – The prefix to be added to the start of every route name. This is inherited
from parents - the parent prefix will also be added to the start of every route.

• host_matching (bool) – Should host matching be enabled? This is implicitly True if
host is non-None.

• host (Optional[str]) – The host of the Blueprint. Used for custom subdomain routing.

4.1. Kyoukai Autodoc 45

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Kyoukai Documentation, Release 2.2.1

If this is None, then this Blueprint will be used for all hosts.

name = None
The name of this Blueprint.

finalized = None
If this Blueprint is finalized or not. Finalization of a blueprint means gathering all of the Maps, and
compiling a routing table which stores the endpoints.

routes = None
The list of routes. This is used in finalization.

map = None
The Map used for this blueprint.

errorhandlers = None
The error handler dictionary.

parent

Return type Blueprint

Returns The parent Blueprint of this blueprint.

prefix

Return type str

Returns The prefix of this Blueprint.

Changed in version 2.2.0: Moved prefix combination to computed_prefix.

computed_prefix

Return type str

Returns The combined prefix (parent + ours) of this Blueprint.

New in version 2.2.0.

tree_routes

Return type Generator[Route, None, None]

Returns A generator that yields all routes from the tree, from parent to children.

host

Return type str

Returns The host for this Blueprint, or the host of any parent Blueprint.

get_submount()
Gets the werkzeug.routing.Submount for this Blueprint.

New in version 2.2.0.

Return type Submount

traverse_tree()
Traverses the tree for children Blueprints.

Return type Generator[Blueprint, None, None]

finalize(**map_options)
Called on the root Blueprint when all Blueprints have been registered and the app is starting.

46 Chapter 4. Automatically generated API documentation

http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/stdtypes.html#str
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Submount
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Submount
https://docs.python.org/3/library/typing.html#typing.Generator

Kyoukai Documentation, Release 2.2.1

This will automatically build a werkzeug.routing.Map of werkzeug.routing.Rule objects
for each Blueprint.

Note: Calling this on sub-blueprints will have no effect, apart from generating a Map. It is recommended
to only call this on the root Blueprint.

Changed in version 2.2.0: This now uses submounts instead of a giant rule amalgamation.

Parameters map_options – The options to pass to the created Map.

Return type Map

Returns The werkzeug.routing.Map created from the routing tree.

add_child(blueprint)
Adds a Blueprint as a child of this one. This is automatically called when using another Blueprint as a
parent.

Parameters blueprint (Blueprint) – The blueprint to add as a child.

Return type Blueprint

route(routing_url, methods=(’GET’, ’HEAD’), **kwargs)
Convenience decorator for adding a route.

This is equivalent to:

route = bp.wrap_route(func, **kwargs)
bp.add_route(route, routing_url, methods)

Changed in version 2.2.0: Now accepts a Route as the function to decorate - this will add a new routing
url and method pair to Route.add_route().

errorhandler(code, endcode=None, step=None)
Helper decorator for adding an error handler.

This is equivalent to:

route = bp.add_errorhandler(cbl, code)

Parameters

• code (int) – The error handler code to use.

• endcode (Optional[int]) – The end of the error code range to handle. Error handlers
will be added for all requests between code and endcode. If this is not provided, only one
code will be handled.

• step (Optional[int]) – The step for the error handler range.

wrap_route(cbl, *args, **kwargs)
Wraps a callable in a Route. This is required for routes to be added.

Parameters cbl – The callable to wrap.

Return type Route

Returns A new Route object.

add_errorhandler(cbl, startcode, endcode=None, step=None)
Adds an error handler to the table of error handlers.

4.1. Kyoukai Autodoc 47

http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Rule
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

Kyoukai Documentation, Release 2.2.1

A blueprint can only have one error handler per code. If it doesn’t have an error handler for that code, it
will try to fetch recursively the parent’s error handler.

Parameters

• cbl – The callable error handler.

• startcode (int) – The error code to handle, for example 404. This also represents the
start of an error range, if endcode is not None.

• endcode (Optional[int]) – The end of the error code range to handle. Error handlers
will be added for all requests between startcode and endcode.

• step (Optional[int]) – The step for the error handler range.

get_errorhandler(exc)
Recursively acquires the error handler for the specified error.

Parameters exc (Union[HTTPException, int]) – The exception to get the error handler
for. This can either be a HTTPException object, or an integer.

Return type Union[None, Route]

Returns The Route object that corresponds to the error handler, or None if no error handler
could be found.

get_hooks(type_)
Gets a list of hooks that match the current type.

These are ordered from parent to child.

Parameters type (str) – The type of hooks to get (currently “pre” or “post”).

Returns An iterable of hooks to run.

add_hook(type_, hook)
Adds a hook to the current Blueprint.

Parameters

• type (str) – The type of hook to add (currently “pre” or “post”).

• hook – The callable function to add as a hook.

after_request(func)
Convenience decorator to add a post-request hook.

before_request(func)
Convenience decorator to add a pre-request hook.

add_route(route, routing_url, methods=(’GET’, ’HEAD’))
Adds a route to the routing table and map.

Parameters

• route (Route) – The route object to add.

This can be gotten from Blueprint.wrap_route, or by directly creating a Route
object.

• routing_url (str) – The Werkzeug-compatible routing URL to add this route under.

For more information, see http://werkzeug.pocoo.org/docs/0.11/routing/.

• methods (Sequence[str]) – An iterable of valid method this route can be called with.

Returns The unmodified Route object.

48 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://werkzeug.pocoo.org/docs/0.11/routing/
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str

Kyoukai Documentation, Release 2.2.1

get_route(endpoint)
Gets the route associated with an endpoint.

Return type Optional[Route]

add_route_group(group)
Adds a route group to the current Blueprint.

Parameters group (RouteGroup) – The RouteGroup to add.

url_for(environment, endpoint, *, method=None, **kwargs)
Gets the URL for a specified endpoint using the arguments of the route.

This works very similarly to Flask’s url_for.

It is not recommended to invoke this method directly - instead, url_for is set on the context object that
is provided to your user function. This will allow you to invoke it with the correct environment already
set.

Parameters

• environment (dict) – The WSGI environment to use to bind to the adapter.

• endpoint (str) – The endpoint to try and retrieve.

• method (Optional[str]) – If set, the method to explicitly provide (for similar end-
points with different allowed routes).

• kwargs – Keyword arguments to provide to the route.

Return type str

Returns The built URL for this endpoint.

match(environment)
Matches with the WSGI environment.

Warning: You should not be using this method yourself.

Changed in version 2.2.0: This will now return the werkeug.routing.Rule as well.

Parameters environment (dict) – The environment dict to perform matching with. You
can use the environ argument of a Request to get the environment back.

Return type Tuple[Route, Container[Any], Rule]

Returns A Route object, which can be invoked to return the right response, and the parameters
to invoke it with.

4.1.5 kyoukai.route

Routes are wrapped function objects that are called upon a HTTP request.

Classes

Route(function, *, . . .) A route object is a wrapped function.

4.1. Kyoukai Autodoc 49

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Container
https://docs.python.org/3/library/typing.html#typing.Any
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Rule

Kyoukai Documentation, Release 2.2.1

class kyoukai.route.Route(function, *, reverse_hooks: bool = False, should_invoke_hooks: bool =
True, do_argument_checking: bool = True, endpoint: str = None)

Bases: object

A route object is a wrapped function. They invoke this function when invoked on routing and calling.

Parameters

• function – The underlying callable. This can be a function, or any other callable.

• reverse_hooks (bool) – If the request hooks should be reversed for this request (i.e
child to parent.)

• should_invoke_hooks (bool) – If request hooks should be invoked. This is automat-
ically False for error handlers.

• do_argument_checking (bool) – If argument type and name checking is enabled for
this route.

• endpoint (Optional[str]) – The custom endpoint for this route.

do_argument_checking = None
If this route should do argument checking.

bp = None
The Blueprint this route is associated with.

routes = None
A list of tuples (url, methods) for this Route.

endpoint = None
The custom endpoint for this route. Could be None.

hooks = None
Our own specific hooks.

add_path(url, methods=(’GET’, ’HEAD’))
Adds a path to the current set of paths for this route.

Parameters

• url (str) – The routing URL to add.

• methods (Sequence[str]) – An iterable of methods to use for this path.

The URL and methods will be added as a pair.

get_submount()

Return type Submount

Returns A submount that represents this route.

New in version 2.2.0.

Changed in version 2.x.x: Changed from getting a list of rules to a single submount object.

get_endpoint_name(bp=None)
Gets the endpoint name for this route.

Parameters bp – The Blueprint to use for name calculation.

Return type str

Returns The endpoint that can be used.

coroutine invoke_function(self, ctx, pre_hooks, post_hooks, params)
Invokes the underlying callable. This is for use in chaining routes.

50 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Submount
https://docs.python.org/3/library/stdtypes.html#str

Kyoukai Documentation, Release 2.2.1

Parameters

• ctx – The HTTPRequestContext to use for this route.

• pre_hooks (list) – A list of hooks to call before the route is invoked.

• post_hooks (list) – A list of hooks to call after the route is invoked.

• params – The parameters to pass to the function.

Returns The result of the invoked function.

check_route_args(params=None)
Checks the arguments for a route.

Parameters params (Optional[dict]) – The parameters passed in, as a dict.

Raises TypeError – If the arguments passed in were not correct.

add_hook(type_, hook)
Adds a hook to the current Route.

Parameters

• type (str) – The type of hook to add (currently “pre” or “post”).

• hook – The callable function to add as a hook.

get_hooks(type_)
Gets the hooks for the current Route for the type.

Parameters type (str) – The type to get.

Returns A list of callables.

before_request(func)
Convenience decorator to add a pre-request hook.

after_request(func)
Convenience decorator to add a post-request hook.

coroutine invoke(self, ctx, args=(), params=None)
Invokes a route. This will run the underlying function.

Parameters

• ctx – The HTTPRequestContext which is used in this request.

• args (Iterable[Any]) – Any args to expand into the function.

• params (Optional[Container[+T_co]]) – Any keyword params that are used in this
request.

Return type Response

Returns The result of the route’s function.

4.1.6 kyoukai.routegroup

Route groups are classes that allow you to group a set of routes together.

Functions

4.1. Kyoukai Autodoc 51

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Container
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response

Kyoukai Documentation, Release 2.2.1

after_request(func) Helper decorator to mark a function as a post-request hook.
before_request(func) Helper decorator to mark a function as a pre-request hook.
errorhandler(startcode[, endcode, step]) A companion function to the RouteGroup class.
get_rg_bp(group) Gets the Blueprint created from a RouteGroup.
hook(type_) Marks a function as a hook.
route(url[, methods]) A companion function to the RouteGroup class.

Classes

RouteGroup A route group is a class that contains multiple methods that
are decorated with the route decorator.

RouteGroupType(name, bases, class_body, **kwargs) The metaclass for a route group.

kyoukai.routegroup.get_rg_bp(group)
Gets the Blueprint created from a RouteGroup.

class kyoukai.routegroup.RouteGroupType(name, bases, class_body, **kwargs)
Bases: type

The metaclass for a route group.

This is responsible for passing the keyword arguments to the metaclass.

Override of __init__ to store the blueprint params.

_init_blueprint(obb)
Initializes the Blueprint used by this route group.

Parameters obb – The route group instance to intialize.

mro()→ list
return a type’s method resolution order

kyoukai.routegroup.route(url, methods=(’GET’, ’HEAD’), **kwargs)
A companion function to the RouteGroup class. This follows Blueprint.route() in terms of arguments,
and marks a function as a route inside the class.

This will return the original function, with some attributes attached:

• in_group: Marks the function as in the route group.

• rg_delegate: Internal. The type of function inside the group this is.

• route_kwargs: Keyword arguments to provide to wrap_route.

• route_url: The routing URL to provide to add_route.

• route_methods: The methods for the route.

• route_hooks: A defaultdict of route-specific hooks.

Additionally, the following methods are added.

• hook: A decorator that adds a hook of type type_.

• before_request: A decorator that adds a pre hook.

• after_request: A decorator that adds a post hook.

New in version 2.1.1.

Changed in version 2.1.3: Added the ability to add route-specific hooks.

52 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/functions.html#type

Kyoukai Documentation, Release 2.2.1

Changed in version 2.2.0: Now accepts an already edited function as the function to decorate - this will add a
new routing url and method pair to the Route.routes.

Changed in version 2.2.2: Default methods changed to GET and HEAD.

Parameters

• url (str) – The routing URL of the route.

• methods (Iterable[str]) – An iterable of methods for the route.

kyoukai.routegroup.errorhandler(startcode, endcode=None, step=None)
A companion function to the RouteGroup class. This follows Blueprint.errorhandler() in terms of
arguments.

Parameters

• startcode (int) – The error code to handle, for example 404. This also represents the
start of an error range, if endcode is not None.

• endcode (Optional[int]) – The end of the error code range to handle. Error handlers
will be added for all requests between startcode and endcode.

• step (Optional[int]) – The step for the error handler range.

kyoukai.routegroup.hook(type_)
Marks a function as a hook.

Parameters type (str) – The type of hook to mark.

kyoukai.routegroup.before_request(func)
Helper decorator to mark a function as a pre-request hook.

kyoukai.routegroup.after_request(func)
Helper decorator to mark a function as a post-request hook.

class kyoukai.routegroup.RouteGroup
Bases: object

A route group is a class that contains multiple methods that are decorated with the route decorator. They produce
a blueprint that can be added to the tree that includes all methods in the route group.

class MyGroup(RouteGroup, prefix="/api/v1"):
def __init__(self, something: str):

self.something = something

@route("/ping")
async def ping(self, ctx: HTTPRequestContext):

return '{"response": self.something}'

Blueprint parameters can be passed in the class call.

To add the route group as a blueprint, use Blueprint.add_route_group(MyGroup, *args,

**kwargs)().

4.1.7 kyoukai.testing

Testing helpers for Kyoukai.

4.1. Kyoukai Autodoc 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

Kyoukai Documentation, Release 2.2.1

Classes

TestKyoukai(*args, . . .) A special subclass that allows you to easily test your
Kyoukai-based app.

class kyoukai.testing._TestingBpCtxManager(app: kyoukai.testing.TestKyoukai)
Bases: object

A context manager that is returned from testing_bp(). When entered, this will produce a new Blueprint
object, that is then set onto the test application as the root blueprint.

After exiting, it will automatically restore the old root Blueprint onto the application, allowing complete isolation
of individual test routes away from eachother.

class kyoukai.testing.TestKyoukai(*args, base_context: asphalt.core.context.Context = None,
**kwargs)

Bases: kyoukai.app.Kyoukai

A special subclass that allows you to easily test your Kyoukai-based app.

Parameters base_context (Optional[Context]) – The base context to use for all request
testing.

classmethod wrap_existing_app(base_context=None)
Wraps an existing app in a test frame.

This allows easy usage of writing unit tests:

main.py
kyk = Kyoukai("my_app")

test.py
testing = TestKyoukai.wrap_existing_app(other_app)
use testing as you would normally

Parameters

• other_app (Kyoukai) – The application object to wrap. Internally, this creates a new
instance of ourselves, then sets the process_request of the subclass to the copied
object.

This means whenever inject_request is called, it will use the old app’s pro-
cess_request to run with, which will use the environment of the previous instance.

Of course, if the old app has any side effects upon process_request, these side effects will
happen when the testing application runs as well, as the old app is completely copied over.

• base_context (Optional[Context]) – The base context to use for this.

testing_bp()
Context handler that allows with TestKyoukai.testing_bp() as bp:

You can then register items onto this new root blueprint until __exit__, which will then destroy the
blueprint.

Return type _TestingBpCtxManager

coroutine inject_request(self, headers, url, method=’GET’, body=None)
Injects a request into the test client.

54 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional

Kyoukai Documentation, Release 2.2.1

This will automatically create the correct context.

Parameters

• headers (dict) – The headers to use.

• body (Optional[str]) – The body to use.

• url (str) – The URL to use.

• method (str) – The method to use.

Return type Response

Returns The result.

finalize(**map_options)
Finalizes the app and blueprints.

This will calculate the current werkzeug.routing.Map which is required for routing to work.

Parameters map_options – The options to pass to the Map for routing.

Return type Map

coroutine handle_httpexception(self, ctx, exception, environ=None)
Handle a HTTP Exception.

Parameters

• ctx (HTTPRequestContext) – The context of the request.

• exception (HTTPException) – The HTTPException to handle.

• environ (Optional[dict]) – The fake WSGI environment.

Return type Response

Returns A werkzeug.wrappers.Response that handles this response.

log_route(request, code)
Logs a route invocation.

Parameters

• request (Request) – The request produced.

• code (int) – The response code of the route.

coroutine process_request(self, request, parent_context)
Processes a Request and returns a Response object.

This is the main processing method of Kyoukai, and is meant to be used by one of the HTTP server
backends, and not by client code.

Parameters

• request (Request) – The werkzeug.wrappers.Request object to process. A
new HTTPRequestContext will be provided to wrap this request inside of to client
code.

• parent_context (Context) – The asphalt.core.Context that is the parent
context for this particular app. It will be used as the parent for the HTTPRequestContext.

Return type Response

Returns A werkzeug.wrappers.Response object that can be written to the client as a
response.

4.1. Kyoukai Autodoc 55

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
https://docs.python.org/3/library/functions.html#int
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response

Kyoukai Documentation, Release 2.2.1

register_blueprint(child)
Registers a child blueprint to this app’s root Blueprint.

This will set up the Blueprint tree, as well as setting up the routing table when finalized.

Parameters child (Blueprint) – The child Blueprint to add. This must be an instance of
Blueprint.

request_class
alias of Request

response_class
alias of Response

root

Return type Blueprint

Returns The root Blueprint for the routing tree.

run(ip=’127.0.0.1’, port=4444, *, component=None)
Runs the Kyoukai server from within your code.

This is not normally invoked - instead Asphalt should invoke the Kyoukai component. However, this is
here for convenience.

coroutine start(self, ip=’127.0.0.1’, port=4444, *, component=None, base_context=None)
Runs the Kyoukai component asynchronously.

This will bypass Asphalt’s default runner, and allow you to run your app easily inside something else, for
example.

Parameters

• ip (str) – The IP of the built-in server.

• port (int) – The port of the built-in server.

• component – The component to start the app with. This should be an instance of
KyoukaiComponent.

• base_context (Optional[Context]) – The base context that the HTTPRequest-
Context should be started with.

4.1.8 kyoukai.util

Misc utilities for usage inside the framework.

Functions

as_html(text[, code, headers]) Returns a HTML response.
as_json(data[, code, headers, json_encoder]) Returns a JSON response.
as_plaintext(text[, code, headers]) Returns a plaintext response.
wrap_response(args[, response_class]) Wrap up a response, if applicable.

kyoukai.util.as_html(text, code=200, headers=None)
Returns a HTML response.

56 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional

Kyoukai Documentation, Release 2.2.1

return as_html("<h1>Hel Na</h1>", code=403)

Parameters

• text (str) – The text to return.

• code (int) – The status code of the response.

• headers (Optional[dict]) – Any optional headers.

Return type Response

Returns A new werkzeug.wrappers.Response representing the HTML.

kyoukai.util.as_plaintext(text, code=200, headers=None)
Returns a plaintext response.

return as_plaintext("hel yea", code=201)

Parameters

• text (str) – The text to return.

• code (int) – The status code of the response.

• headers (Optional[dict]) – Any optional headers.

Return type Response

Returns A new werkzeug.wrappers.Response representing the text.

kyoukai.util.as_json(data, code=200, headers=None, *, json_encoder=None, **kwargs)
Returns a JSON response.

return as_json({"response": "yes", "code": 201}, code=201)

Parameters

• data (Union[dict, list]) – The data to encode.

• code (int) – The status code of the response.

• headers (Optional[dict]) – Any optional headers.

• json_encoder (Optional[JSONEncoder]) – The encoder class to use to encode.

Return type Response

Returns A new werkzeug.wrappers.Response representing the JSON.

kyoukai.util.wrap_response(args, response_class=<class ’werkzeug.wrappers.Response’>)
Wrap up a response, if applicable. This allows Flask-like return “whatever”.

Parameters

• args – The arguments that are being wrapped.

• response_class (Response) – The Response class that is being used.

Return type Response

4.1. Kyoukai Autodoc 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response

Kyoukai Documentation, Release 2.2.1

class kyoukai.Kyoukai(application_name: str, *, server_name: str = None, **kwargs)
Bases: object

The Kyoukai type is the core of the Kyoukai framework, and the core of your web application based upon the
Kyoukai framework. It acts as a central router and request processor that takes in requests from the protocols
and returns responses.

The application name is currently unused, but it is good practice to set it correctly anyway in case it is used in
future editions of Kyoukai.

You normally create an application instance inside your component file, like so:

from kyoukai.app import Kyoukai

... # setup code

kyk = Kyoukai("my_app")
kyk.register_blueprint(whatever)

... # other setup

class MyContainer(ContainerComponent):
async def start(self, ctx):

self.add_component('kyoukai', KyoukaiComponent, ip="127.0.0.1", port=4444,
app="app:app")

Of course, you can also embed Kyoukai inside another app, by awaiting Kyoukai.start().

Parameters

• application_name (str) – The name of the application that is being created. This is
passed to the Blueprint being created as the root blueprint.

This is used in url_for, for example, to get the endpoint of routes registered to the root
Blueprint.

• server_name (Optional[str]) – Keyword-only. The SERVER_NAME to use inside
the fake WSGI environment created for url_for, if applicable.

• host_matching – Should host matching be enabled? This will be implicitly True if
host is not None.

• host – The host used for host matching, to be passed to the root Blueprint. By default, no
host is used, so all hosts are matched on the root Blueprint.

• application_root – Keyword-only. The APPLICATION_ROOT to use inside the fake
WSGI environment created for url_for, if applicable.

• loop – Keyword-only. The asyncio event loop to use for this app. If no loop is specified it,
will be automatically fetched using asyncio.get_event_loop().

• request_class – Keyword-only. The custom request class to instantiate requests with.

• response_class – Keyword-only. The custom response class to instantiate responses
with.

• context_class – Keyword-only. The Context subclass to use when creating a con-
text. Defaults to HTTPRequestContext.

finalize(**map_options)
Finalizes the app and blueprints.

This will calculate the current werkzeug.routing.Map which is required for routing to work.

58 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map

Kyoukai Documentation, Release 2.2.1

Parameters map_options – The options to pass to the Map for routing.

Return type Map

coroutine handle_httpexception(self, ctx, exception, environ=None)
Handle a HTTP Exception.

Parameters

• ctx (HTTPRequestContext) – The context of the request.

• exception (HTTPException) – The HTTPException to handle.

• environ (Optional[dict]) – The fake WSGI environment.

Return type Response

Returns A werkzeug.wrappers.Response that handles this response.

log_route(request, code)
Logs a route invocation.

Parameters

• request (Request) – The request produced.

• code (int) – The response code of the route.

coroutine process_request(self, request, parent_context)
Processes a Request and returns a Response object.

This is the main processing method of Kyoukai, and is meant to be used by one of the HTTP server
backends, and not by client code.

Parameters

• request (Request) – The werkzeug.wrappers.Request object to process. A
new HTTPRequestContext will be provided to wrap this request inside of to client
code.

• parent_context (Context) – The asphalt.core.Context that is the parent
context for this particular app. It will be used as the parent for the HTTPRequestContext.

Return type Response

Returns A werkzeug.wrappers.Response object that can be written to the client as a
response.

register_blueprint(child)
Registers a child blueprint to this app’s root Blueprint.

This will set up the Blueprint tree, as well as setting up the routing table when finalized.

Parameters child (Blueprint) – The child Blueprint to add. This must be an instance of
Blueprint.

request_class
alias of Request

response_class
alias of Response

root

Return type Blueprint

Returns The root Blueprint for the routing tree.

4.1. Kyoukai Autodoc 59

http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
https://docs.python.org/3/library/functions.html#int
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response

Kyoukai Documentation, Release 2.2.1

run(ip=’127.0.0.1’, port=4444, *, component=None)
Runs the Kyoukai server from within your code.

This is not normally invoked - instead Asphalt should invoke the Kyoukai component. However, this is
here for convenience.

coroutine start(self, ip=’127.0.0.1’, port=4444, *, component=None, base_context=None)
Runs the Kyoukai component asynchronously.

This will bypass Asphalt’s default runner, and allow you to run your app easily inside something else, for
example.

Parameters

• ip (str) – The IP of the built-in server.

• port (int) – The port of the built-in server.

• component – The component to start the app with. This should be an instance of
KyoukaiComponent.

• base_context (Optional[Context]) – The base context that the HTTPRequest-
Context should be started with.

class kyoukai.HTTPRequestContext(parent: asphalt.core.context.Context, request:
werkzeug.wrappers.Request)

Bases: asphalt.core.context.Context

The context subclass passed to all requests within Kyoukai.

add_resource(value, name=’default’, context_attr=None, types=())
Add a resource to this context.

This will cause a resource_added event to be dispatched.

Parameters

• value – the actual resource value

• name (str) – name of this resource (unique among all its registered types within a single
context)

• context_attr (Optional[str]) – name of the context attribute this resource will be
accessible as

• types (Union[type, Sequence[type]]) – type(s) to register the resource as (omit to
use the type of value)

Raises asphalt.core.context.ResourceConflict – if the resource conflicts with
an existing one in any way

Return type None

add_resource_factory(factory_callback, types, name=’default’, context_attr=None)
Add a resource factory to this context.

This will cause a resource_added event to be dispatched.

A resource factory is a callable that generates a “contextual” resource when it is requested by either using
any of the methods get_resource(), require_resource() or request_resource() or its
context attribute is accessed.

When a new resource is created in this manner, it is always bound to the context through it was requested,
regardless of where in the chain the factory itself was added to.

Parameters

60 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#type

Kyoukai Documentation, Release 2.2.1

• factory_callback (Callable[[Context], Any]) – a (non-coroutine) callable that
takes a context instance as argument and returns a tuple of (resource object, teardown
callback)

• types (Union[type, Sequence[Type[+CT_co]]]) – one or more types to register the
generated resource as on the target context

• name (str) – name of the resource that will be created in the target context

• context_attr (Optional[str]) – name of the context attribute the created resource
will be accessible as

Raises asphalt.core.context.ResourceConflict – if there is an existing resource
factory for the given type/name combinations or the given context variable

Return type None

add_teardown_callback(callback, pass_exception=False)
Add a callback to be called when this context closes.

This is intended for cleanup of resources, and the list of callbacks is processed in the reverse order in which
they were added, so the last added callback will be called first.

The callback may return an awaitable. If it does, the awaitable is awaited on before calling any further
callbacks.

Parameters

• callback (Callable) – a callable that is called with either no arguments or with the
exception that ended this context, based on the value of pass_exception

• pass_exception (bool) – True to pass the callback the exception that ended this
context (or None if the context ended cleanly)

Return type None

call_async(func, *args, **kwargs)
Call the given callable in the event loop thread.

This method lets you call asynchronous code from a worker thread. Do not use it from within the event
loop thread.

If the callable returns an awaitable, it is resolved before returning to the caller.

Parameters

• func (Callable) – a regular function or a coroutine function

• args – positional arguments to call the callable with

• kwargs – keyword arguments to call the callable with

Returns the return value of the call

call_in_executor(func, *args, executor=None, **kwargs)
Call the given callable in an executor.

Parameters

• func (Callable) – the callable to call

• args – positional arguments to call the callable with

• executor (Union[Executor, str, None]) – either an Executor instance, the re-
source name of one or None to use the event loop’s default executor

• kwargs – keyword arguments to call the callable with

4.1. Kyoukai Autodoc 61

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor

Kyoukai Documentation, Release 2.2.1

Return type Awaitable[+T_co]

Returns an awaitable that resolves to the return value of the call

coroutine close(self, exception=None)
Close this context and call any necessary resource teardown callbacks.

If a teardown callback returns an awaitable, the return value is awaited on before calling any further
teardown callbacks.

All callbacks will be processed, even if some of them raise exceptions. If at least one callback raised an
error, this method will raise a TeardownError at the end.

After this method has been called, resources can no longer be requested or published on this context.

Parameters exception (Optional[BaseException]) – the exception, if any, that
caused this context to be closed

Raises TeardownError – if one or more teardown callbacks raise an exception

Return type None

closed
Return True if the context has been closed, False otherwise.

Return type bool

context_chain
Return a list of contexts starting from this one, its parent and so on.

Return type List[Context]

get_resource(type, name=’default’)
Look up a resource in the chain of contexts.

Parameters

• type (type) – type of the requested resource

• name (str) – name of the requested resource

Returns the requested resource, or None if none was available

loop
Return the event loop associated with this context.

Return type AbstractEventLoop

parent
Return the parent context, or None if there is no parent.

Return type Optional[Context]

coroutine request_resource(self, type, name=’default’)
Look up a resource in the chain of contexts.

This is like get_resource() except that if the resource is not already available, it will wait for one to
become available.

Parameters

• type (type) – type of the requested resource

• name (str) – name of the requested resource

Returns the requested resource

62 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str

Kyoukai Documentation, Release 2.2.1

require_resource(type, name=’default’)
Look up a resource in the chain of contexts and raise an exception if it is not found.

This is like get_resource() except that instead of returning None when a resource is not found, it
will raise ResourceNotFound.

Parameters

• type (type) – type of the requested resource

• name (str) – name of the requested resource

Returns the requested resource

Raises asphalt.core.context.ResourceNotFound – if a resource of the given type
and name was not found

threadpool(executor=None)
Return an asynchronous context manager that runs the block in a (thread pool) executor.

Parameters executor (Union[Executor, str, None]) – either an Executor instance,
the resource name of one or None to use the event loop’s default executor

Returns an asynchronous context manager

url_for(endpoint, *, method=None, **kwargs)
A context-local version of url_for.

For more information, see the documentation on url_for().

class kyoukai.KyoukaiComponent(app, ip: str = ’127.0.0.1’, port: int = 4444, **cfg)
Bases: kyoukai.asphalt.KyoukaiBaseComponent

A component for Kyoukai. This includes the built-in HTTP server.

Changed in version 2.2: Passing run_server as False will not run the inbuilt web server.

Creates a new component.

Parameters

• app – The application object to use. This can either be the real application object, or a
string that resolves to a reference for the real application object.

• ip (str) – If using the built-in HTTP server, the IP to bind to.

• port (int) – If using the built-in HTTP server, the port to bind to.

• cfg – Additional configuration.

get_protocol(ctx, serv_info)
Gets the protocol to use for this webserver.

get_server_name()

Returns The server name of this app.

coroutine start(self, ctx)
Starts the webserver if required.

Parameters ctx (Context) – The base context.

class kyoukai.Blueprint(name: str, parent: typing.Union[kyoukai.blueprint.Blueprint, NoneType] =
None, prefix: str = ”, *, host_matching: bool = False, host: str = None)

Bases: object

A Blueprint is a “route container” - it contains 0 to N routes, and 0 to N child Blueprints that inherit from the
parent.

4.1. Kyoukai Autodoc 63

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

Kyoukai Documentation, Release 2.2.1

Parameters

• name (str) – The name of this Blueprint. This is used when generating endpoints in the
finalize stage.

• parent (Optional[Blueprint]) – The parent of this Blueprint. Parent blueprints will
gather the routes of their children, and return a giant werkzeug.routing.Map object
that contains all of the route maps in the children

• prefix (str) – The prefix to be added to the start of every route name. This is inherited
from parents - the parent prefix will also be added to the start of every route.

• host_matching (bool) – Should host matching be enabled? This is implicitly True if
host is non-None.

• host (Optional[str]) – The host of the Blueprint. Used for custom subdomain routing.
If this is None, then this Blueprint will be used for all hosts.

add_child(blueprint)
Adds a Blueprint as a child of this one. This is automatically called when using another Blueprint as a
parent.

Parameters blueprint (Blueprint) – The blueprint to add as a child.

Return type Blueprint

add_errorhandler(cbl, startcode, endcode=None, step=None)
Adds an error handler to the table of error handlers.

A blueprint can only have one error handler per code. If it doesn’t have an error handler for that code, it
will try to fetch recursively the parent’s error handler.

Parameters

• cbl – The callable error handler.

• startcode (int) – The error code to handle, for example 404. This also represents the
start of an error range, if endcode is not None.

• endcode (Optional[int]) – The end of the error code range to handle. Error handlers
will be added for all requests between startcode and endcode.

• step (Optional[int]) – The step for the error handler range.

add_hook(type_, hook)
Adds a hook to the current Blueprint.

Parameters

• type (str) – The type of hook to add (currently “pre” or “post”).

• hook – The callable function to add as a hook.

add_route(route, routing_url, methods=(’GET’, ’HEAD’))
Adds a route to the routing table and map.

Parameters

• route (Route) – The route object to add.

This can be gotten from Blueprint.wrap_route, or by directly creating a Route
object.

• routing_url (str) – The Werkzeug-compatible routing URL to add this route under.

For more information, see http://werkzeug.pocoo.org/docs/0.11/routing/.

64 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://werkzeug.pocoo.org/docs/0.11/routing/

Kyoukai Documentation, Release 2.2.1

• methods (Sequence[str]) – An iterable of valid method this route can be called with.

Returns The unmodified Route object.

add_route_group(group)
Adds a route group to the current Blueprint.

Parameters group (RouteGroup) – The RouteGroup to add.

after_request(func)
Convenience decorator to add a post-request hook.

before_request(func)
Convenience decorator to add a pre-request hook.

computed_prefix

Return type str

Returns The combined prefix (parent + ours) of this Blueprint.

New in version 2.2.0.

errorhandler(code, endcode=None, step=None)
Helper decorator for adding an error handler.

This is equivalent to:

route = bp.add_errorhandler(cbl, code)

Parameters

• code (int) – The error handler code to use.

• endcode (Optional[int]) – The end of the error code range to handle. Error handlers
will be added for all requests between code and endcode. If this is not provided, only one
code will be handled.

• step (Optional[int]) – The step for the error handler range.

finalize(**map_options)
Called on the root Blueprint when all Blueprints have been registered and the app is starting.

This will automatically build a werkzeug.routing.Map of werkzeug.routing.Rule objects
for each Blueprint.

Note: Calling this on sub-blueprints will have no effect, apart from generating a Map. It is recommended
to only call this on the root Blueprint.

Changed in version 2.2.0: This now uses submounts instead of a giant rule amalgamation.

Parameters map_options – The options to pass to the created Map.

Return type Map

Returns The werkzeug.routing.Map created from the routing tree.

get_errorhandler(exc)
Recursively acquires the error handler for the specified error.

Parameters exc (Union[HTTPException, int]) – The exception to get the error handler
for. This can either be a HTTPException object, or an integer.

4.1. Kyoukai Autodoc 65

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Rule
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
https://docs.python.org/3/library/typing.html#typing.Union
http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException
https://docs.python.org/3/library/functions.html#int

Kyoukai Documentation, Release 2.2.1

Return type Union[None, Route]

Returns The Route object that corresponds to the error handler, or None if no error handler
could be found.

get_hooks(type_)
Gets a list of hooks that match the current type.

These are ordered from parent to child.

Parameters type (str) – The type of hooks to get (currently “pre” or “post”).

Returns An iterable of hooks to run.

get_route(endpoint)
Gets the route associated with an endpoint.

Return type Optional[Route]

get_submount()
Gets the werkzeug.routing.Submount for this Blueprint.

New in version 2.2.0.

Return type Submount

host

Return type str

Returns The host for this Blueprint, or the host of any parent Blueprint.

match(environment)
Matches with the WSGI environment.

Warning: You should not be using this method yourself.

Changed in version 2.2.0: This will now return the werkeug.routing.Rule as well.

Parameters environment (dict) – The environment dict to perform matching with. You
can use the environ argument of a Request to get the environment back.

Return type Tuple[Route, Container[Any], Rule]

Returns A Route object, which can be invoked to return the right response, and the parameters
to invoke it with.

parent

Return type Blueprint

Returns The parent Blueprint of this blueprint.

prefix

Return type str

Returns The prefix of this Blueprint.

Changed in version 2.2.0: Moved prefix combination to computed_prefix.

route(routing_url, methods=(’GET’, ’HEAD’), **kwargs)
Convenience decorator for adding a route.

This is equivalent to:

66 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Submount
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Submount
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Container
https://docs.python.org/3/library/typing.html#typing.Any
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Rule
https://docs.python.org/3/library/stdtypes.html#str

Kyoukai Documentation, Release 2.2.1

route = bp.wrap_route(func, **kwargs)
bp.add_route(route, routing_url, methods)

Changed in version 2.2.0: Now accepts a Route as the function to decorate - this will add a new routing
url and method pair to Route.add_route().

traverse_tree()
Traverses the tree for children Blueprints.

Return type Generator[Blueprint, None, None]

tree_routes

Return type Generator[Route, None, None]

Returns A generator that yields all routes from the tree, from parent to children.

url_for(environment, endpoint, *, method=None, **kwargs)
Gets the URL for a specified endpoint using the arguments of the route.

This works very similarly to Flask’s url_for.

It is not recommended to invoke this method directly - instead, url_for is set on the context object that
is provided to your user function. This will allow you to invoke it with the correct environment already
set.

Parameters

• environment (dict) – The WSGI environment to use to bind to the adapter.

• endpoint (str) – The endpoint to try and retrieve.

• method (Optional[str]) – If set, the method to explicitly provide (for similar end-
points with different allowed routes).

• kwargs – Keyword arguments to provide to the route.

Return type str

Returns The built URL for this endpoint.

wrap_route(cbl, *args, **kwargs)
Wraps a callable in a Route. This is required for routes to be added.

Parameters cbl – The callable to wrap.

Return type Route

Returns A new Route object.

class kyoukai.Route(function, *, reverse_hooks: bool = False, should_invoke_hooks: bool = True,
do_argument_checking: bool = True, endpoint: str = None)

Bases: object

A route object is a wrapped function. They invoke this function when invoked on routing and calling.

Parameters

• function – The underlying callable. This can be a function, or any other callable.

• reverse_hooks (bool) – If the request hooks should be reversed for this request (i.e
child to parent.)

• should_invoke_hooks (bool) – If request hooks should be invoked. This is automat-
ically False for error handlers.

4.1. Kyoukai Autodoc 67

https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Kyoukai Documentation, Release 2.2.1

• do_argument_checking (bool) – If argument type and name checking is enabled for
this route.

• endpoint (Optional[str]) – The custom endpoint for this route.

add_hook(type_, hook)
Adds a hook to the current Route.

Parameters

• type (str) – The type of hook to add (currently “pre” or “post”).

• hook – The callable function to add as a hook.

add_path(url, methods=(’GET’, ’HEAD’))
Adds a path to the current set of paths for this route.

Parameters

• url (str) – The routing URL to add.

• methods (Sequence[str]) – An iterable of methods to use for this path.

The URL and methods will be added as a pair.

after_request(func)
Convenience decorator to add a post-request hook.

before_request(func)
Convenience decorator to add a pre-request hook.

check_route_args(params=None)
Checks the arguments for a route.

Parameters params (Optional[dict]) – The parameters passed in, as a dict.

Raises TypeError – If the arguments passed in were not correct.

get_endpoint_name(bp=None)
Gets the endpoint name for this route.

Parameters bp – The Blueprint to use for name calculation.

Return type str

Returns The endpoint that can be used.

get_hooks(type_)
Gets the hooks for the current Route for the type.

Parameters type (str) – The type to get.

Returns A list of callables.

get_submount()

Return type Submount

Returns A submount that represents this route.

New in version 2.2.0.

Changed in version 2.x.x: Changed from getting a list of rules to a single submount object.

coroutine invoke(self, ctx, args=(), params=None)
Invokes a route. This will run the underlying function.

Parameters

68 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Submount

Kyoukai Documentation, Release 2.2.1

• ctx – The HTTPRequestContext which is used in this request.

• args (Iterable[Any]) – Any args to expand into the function.

• params (Optional[Container[+T_co]]) – Any keyword params that are used in this
request.

Return type Response

Returns The result of the route’s function.

coroutine invoke_function(self, ctx, pre_hooks, post_hooks, params)
Invokes the underlying callable. This is for use in chaining routes.

Parameters

• ctx – The HTTPRequestContext to use for this route.

• pre_hooks (list) – A list of hooks to call before the route is invoked.

• post_hooks (list) – A list of hooks to call after the route is invoked.

• params – The parameters to pass to the function.

Returns The result of the invoked function.

class kyoukai.RouteGroup
Bases: object

A route group is a class that contains multiple methods that are decorated with the route decorator. They produce
a blueprint that can be added to the tree that includes all methods in the route group.

class MyGroup(RouteGroup, prefix="/api/v1"):
def __init__(self, something: str):

self.something = something

@route("/ping")
async def ping(self, ctx: HTTPRequestContext):

return '{"response": self.something}'

Blueprint parameters can be passed in the class call.

To add the route group as a blueprint, use Blueprint.add_route_group(MyGroup, *args,

**kwargs)().

class kyoukai.TestKyoukai(*args, base_context: asphalt.core.context.Context = None, **kwargs)
Bases: kyoukai.app.Kyoukai

A special subclass that allows you to easily test your Kyoukai-based app.

Parameters base_context (Optional[Context]) – The base context to use for all request
testing.

finalize(**map_options)
Finalizes the app and blueprints.

This will calculate the current werkzeug.routing.Map which is required for routing to work.

Parameters map_options – The options to pass to the Map for routing.

Return type Map

coroutine handle_httpexception(self, ctx, exception, environ=None)
Handle a HTTP Exception.

Parameters

4.1. Kyoukai Autodoc 69

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Container
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map

Kyoukai Documentation, Release 2.2.1

• ctx (HTTPRequestContext) – The context of the request.

• exception (HTTPException) – The HTTPException to handle.

• environ (Optional[dict]) – The fake WSGI environment.

Return type Response

Returns A werkzeug.wrappers.Response that handles this response.

coroutine inject_request(self, headers, url, method=’GET’, body=None)
Injects a request into the test client.

This will automatically create the correct context.

Parameters

• headers (dict) – The headers to use.

• body (Optional[str]) – The body to use.

• url (str) – The URL to use.

• method (str) – The method to use.

Return type Response

Returns The result.

log_route(request, code)
Logs a route invocation.

Parameters

• request (Request) – The request produced.

• code (int) – The response code of the route.

coroutine process_request(self, request, parent_context)
Processes a Request and returns a Response object.

This is the main processing method of Kyoukai, and is meant to be used by one of the HTTP server
backends, and not by client code.

Parameters

• request (Request) – The werkzeug.wrappers.Request object to process. A
new HTTPRequestContext will be provided to wrap this request inside of to client
code.

• parent_context (Context) – The asphalt.core.Context that is the parent
context for this particular app. It will be used as the parent for the HTTPRequestContext.

Return type Response

Returns A werkzeug.wrappers.Response object that can be written to the client as a
response.

register_blueprint(child)
Registers a child blueprint to this app’s root Blueprint.

This will set up the Blueprint tree, as well as setting up the routing table when finalized.

Parameters child (Blueprint) – The child Blueprint to add. This must be an instance of
Blueprint.

request_class
alias of Request

70 Chapter 4. Automatically generated API documentation

http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
https://docs.python.org/3/library/functions.html#int
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response
http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response

Kyoukai Documentation, Release 2.2.1

response_class
alias of Response

root

Return type Blueprint

Returns The root Blueprint for the routing tree.

run(ip=’127.0.0.1’, port=4444, *, component=None)
Runs the Kyoukai server from within your code.

This is not normally invoked - instead Asphalt should invoke the Kyoukai component. However, this is
here for convenience.

coroutine start(self, ip=’127.0.0.1’, port=4444, *, component=None, base_context=None)
Runs the Kyoukai component asynchronously.

This will bypass Asphalt’s default runner, and allow you to run your app easily inside something else, for
example.

Parameters

• ip (str) – The IP of the built-in server.

• port (int) – The port of the built-in server.

• component – The component to start the app with. This should be an instance of
KyoukaiComponent.

• base_context (Optional[Context]) – The base context that the HTTPRequest-
Context should be started with.

testing_bp()
Context handler that allows with TestKyoukai.testing_bp() as bp:

You can then register items onto this new root blueprint until __exit__, which will then destroy the
blueprint.

Return type _TestingBpCtxManager

classmethod wrap_existing_app(base_context=None)
Wraps an existing app in a test frame.

This allows easy usage of writing unit tests:

main.py
kyk = Kyoukai("my_app")

test.py
testing = TestKyoukai.wrap_existing_app(other_app)
use testing as you would normally

Parameters

• other_app (Kyoukai) – The application object to wrap. Internally, this creates a new
instance of ourselves, then sets the process_request of the subclass to the copied
object.

This means whenever inject_request is called, it will use the old app’s pro-
cess_request to run with, which will use the environment of the previous instance.

Of course, if the old app has any side effects upon process_request, these side effects will
happen when the testing application runs as well, as the old app is completely copied over.

4.1. Kyoukai Autodoc 71

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional

Kyoukai Documentation, Release 2.2.1

• base_context (Optional[Context]) – The base context to use for this.

4.2 Kyoukai Changelog

Here you can see the list of changes between each Kyoukai release.

4.2.1 Version 2.x.x

• Add the ability to have multiple error handlers per function.

• Add Route.add_path().

• Fix rules being duplicated in the root mapping.

4.2.2 Version 2.2.1

• Add the ability to override the context class created.

• Debug log full tracebacks on HTTPExceptions inside routes.

• Change log message when building route mapping.

• Explicitly handle werkzeug.exceptions.BadRequestKeyError in app processing.

• Decompress client body data when a Content-Encoding is detected in the httptools backend.

4.2.3 Version 2.2.0

• Add the ability to override endpoint generation for Route objects.

• Change the routing tree to use werkzeug.routing.Submount objects instead of prefix combination.

• Allow a Route to have multiple werkzeug.routing.Rule objects created from it.

• Remove Route.create_rule() - replaced by Route.get_rules().

• Blueprint.route() and routegroup.route() will now append new routes to the Route object.

• Add HTTP OPTIONS support. Kyoukai will automatically intercept any OPTIONS requests, and return the
right response without user code needing to handle it.

• Expose the werkzeug.routing.Map on Blueprint.map.

4.2.4 Version 2.1.3

• Add errorhandler() to mark a function inside a route group as an error handler.

• Add request hook support to route groups.

• Add as_html(), as_plaintext(), as_json() helper methods.

• Add Host Matching support. See Host Matching.

4.2.5 Version 2.1.2

• Add RouteGroup.

72 Chapter 4. Automatically generated API documentation

https://docs.python.org/3/library/typing.html#typing.Optional
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Submount
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Rule
http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map

Kyoukai Documentation, Release 2.2.1

4.2.6 Version 2.1.1

• Fix request bodies not being read properly.

• Fix loop propagation.

• Fix http2 module for H2 3.0.0.

4.2.7 Version 2.1.0

• Add Route.hooks property to Route, which allows route-specific hooks.

• Add the ability to disable argument conversion on Route objects.

• Automatically disable argument conversion on error handlers.

• HTTP/2 is now automatically enabled in all requests over TLS, if available.

• HTTPS is now easier to configure (requires one config file change).

4.2.8 Version 2.0.5

• Add REMOTE_ADDR and REMOTE_PORT to WSGI environ in httptools backend.

• Add REMOTE_ADDR and REMOTE_PORT to WSGI environ in h2 backend.

4.2.9 Version 2.0.4.1

• Automatically stringify the response body.

4.2.10 Version 2.0.3

• Fix Content-Type and Content-Length header parsing.

• Add automatic JSON form parsing.

• Log when a HTTPException is raised inside a route function.

4.2.11 Version 2.0.2

• Automatic argument conversion now ignores functions with _empty params.

4.2.12 Version 2.0.1

• Error handlers can now handle errors that happen in other error handlers.

4.2. Kyoukai Changelog 73

Kyoukai Documentation, Release 2.2.1

4.2.13 Version 2.0

Version 2.0 is a major overhaul of the library, simplifying it massively and removing a lot of redundant or otherwise
overly complex code.

• Requests and responses are now based on Werkzeug data structures. Werkzeug is a much more battle tested
library than Kyoukai; it ensures that there are less edge cases during HTTP parsing.

• Routing is now handled by Werkzeug and the Rule/Map based router rather than overly complex regex routes.

• The application object is now I/O blind - it will take in a Request object and produce a Response object, instead
of writing to the stream directly.

• A new gunicorn HTTP backend has been added - using the gaiohttp worker, gunicorn can now be con-
nected to Kyoukai.

• A new uwsgi HTTP backend has been added - uWSGI running in asyncio mode can now be connected to
Kyoukai.

• A new HTTP/2 backend has been added which uses the pure Python h2 library as a state machine for parsing
HTTP frames.

• The httptools backend has been rewritten - it is now more reliable and supports chunked data streams.

4.2.14 Version 1.9.2

• Add depth property which signifies how deep in the tree the Blueprint is.

• The routing tree no longer considers matching routes that don’t start with the prefix of the blueprint.

• Add tree_path property which shows the full tree path to a Blueprint.

• Add the ability to set 405 error handlers on Blueprints. The routing engine will automatically try and match the
405 on the lowest common ancestor of all routes that failed to match in the blueprint tree.

• Add blueprint and route attributes to HTTPRequestContext.

• Add ip and port attributes to Request.

• Correctly load cookies from the Cookie header from client requests.

• Converters will now handle *args and **kwargs in functions properly.

• HTTPExceptions have been overhauled to allow early exiting with a custom response. Do not abuse as a
replacement for the return statement.

4.2.15 Version 1.9.1

• Large amount of code clean up relating to the embedded HTTP server. The HTTP server now uses httptools to
create requests which is more reliable than http_parser.

4.2.16 Version 1.8.6

• Add a default static file handler.

74 Chapter 4. Automatically generated API documentation

Kyoukai Documentation, Release 2.2.1

4.2.17 Version 1.8.5

• Routing tree has been improved by allowing two routes with the same path but different methods to reside in
two different blueprints.

4.2.18 Version 1.8.4

• Error handlers can now error themselves, and this is handled gracefully.

• If a match is invalid, it will raise a 500 error at compile time, which is usually when routes are first matched.

4.2.19 Version 1.8.3

• Converters can now be awaitables.

4.2.20 Version 1.8.2

• JSON forms are now lazy loaded when .form is called.

4.2.21 Version 1.8.1

• Fix crashing at startup without a startup function registered.

• Fix routing tree not working with multiple URL prefixes.

• Fix default converters.

4.2.22 Version 1.8.0

• Add the ability to override the Request and Response classes used in views with app.request_cls and
app.response_cls respectively.

• Views now have the ability to change which Route class they use in the decorator.

• Implement the Werkzeug Debugger on 500 errors if the app is in debug mode.

4.2.23 Version 1.7.3

• Add the ability to register a callable to run on startup. This callable can be a regular function or a coroutine.

4.2.24 Version 1.7.2

• Form handling is now handled by Werkzeug.

• Add a new attribute, kyoukai.request.Request.files which stores uploaded files from the form
passed in.

• Requests are no longer parsed multiple times.

4.2. Kyoukai Changelog 75

Kyoukai Documentation, Release 2.2.1

4.2.25 Version 1.7.0

• Overhaul template renderers. This allows easier creation of a template renderer with a specific engine without
having to use engine-specific code in views.

• Add a Jinja2 based renderer. This can be enabled by passing template_renderer="jinja2" in your
application constructor.

4.2.26 Version 1.6.0

• Add converters. Converters allow annotations to be added to parameters which will automatically convert the
argument passed in to that type, if possible.

• Exception handlers now take an exception param as the second arg, which is the HTTPException that caused
this error handler to happen.

4.2.27 Version 1.5.0

• Large amount of internal codebase re-written.

• The Blueprint system was overhauled into a tree system which handles routes much better than before.

76 Chapter 4. Automatically generated API documentation

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

77

Kyoukai Documentation, Release 2.2.1

78 Chapter 5. Indices and tables

Python Module Index

k
kyoukai, 31
kyoukai.app, 31
kyoukai.asphalt, 39
kyoukai.backends, 34
kyoukai.backends.http2, 36
kyoukai.backends.httptools_, 34
kyoukai.blueprint, 45
kyoukai.route, 49
kyoukai.routegroup, 51
kyoukai.testing, 53
kyoukai.util, 56

79

Kyoukai Documentation, Release 2.2.1

80 Python Module Index

Index

Symbols
_TestingBpCtxManager (class in kyoukai.testing), 54
__init__() (werkzeug.wrappers.werkzeug.wrappers.Response.Response

method), 17
_init_blueprint() (kyoukai.routegroup.RouteGroupType

method), 52
_processing_done() (ky-

oukai.backends.http2.H2KyoukaiProtocol
method), 38

_raw_write() (kyoukai.backends.httptools_.KyoukaiProtocol
method), 36

wait() (kyoukai.backends.httptools.KyoukaiProtocol
method), 36

A
accept_charsets (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 14
accept_encodings (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 14
accept_languages (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 14
accept_mimetypes (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 14
access_route (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 14
add_child() (kyoukai.Blueprint method), 64
add_child() (kyoukai.blueprint.Blueprint method), 47
add_errorhandler() (kyoukai.Blueprint method), 64
add_errorhandler() (kyoukai.blueprint.Blueprint method),

47
add_hook() (kyoukai.Blueprint method), 64
add_hook() (kyoukai.blueprint.Blueprint method), 48
add_hook() (kyoukai.Route method), 68
add_hook() (kyoukai.route.Route method), 51
add_path() (kyoukai.Route method), 68
add_path() (kyoukai.route.Route method), 50
add_resource() (kyoukai.asphalt.HTTPRequestContext

method), 42
add_resource() (kyoukai.HTTPRequestContext method),

60
add_resource_factory() (ky-

oukai.asphalt.HTTPRequestContext method),
42

add_resource_factory() (kyoukai.HTTPRequestContext
method), 60

add_route() (kyoukai.Blueprint method), 64
add_route() (kyoukai.blueprint.Blueprint method), 48
add_route_group() (kyoukai.Blueprint method), 65
add_route_group() (kyoukai.blueprint.Blueprint method),

49
add_teardown_callback() (ky-

oukai.asphalt.HTTPRequestContext method),
43

add_teardown_callback() (ky-
oukai.HTTPRequestContext method), 61

after_request() (in module kyoukai.routegroup), 53
after_request() (kyoukai.Blueprint method), 65
after_request() (kyoukai.blueprint.Blueprint method), 48
after_request() (kyoukai.Route method), 68
after_request() (kyoukai.route.Route method), 51
app (kyoukai.asphalt.HTTPRequestContext attribute), 41
app (kyoukai.asphalt.KyoukaiBaseComponent attribute),

40
args (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 14
as_html() (in module kyoukai.util), 56
as_json() (in module kyoukai.util), 57
as_plaintext() (in module kyoukai.util), 57
authorization (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15

B
backend (kyoukai.asphalt.KyoukaiBaseComponent at-

tribute), 41
base_context (kyoukai.asphalt.KyoukaiBaseComponent

attribute), 41
base_url (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
before_request() (in module kyoukai.routegroup), 53

81

Kyoukai Documentation, Release 2.2.1

before_request() (kyoukai.Blueprint method), 65
before_request() (kyoukai.blueprint.Blueprint method),

48
before_request() (kyoukai.Route method), 68
before_request() (kyoukai.route.Route method), 51
Blueprint (class in kyoukai), 63
Blueprint (class in kyoukai.blueprint), 45
bp (kyoukai.asphalt.HTTPRequestContext attribute), 42
bp (kyoukai.route.Route attribute), 50

C
cache_control (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
call_async() (kyoukai.asphalt.HTTPRequestContext

method), 43
call_async() (kyoukai.HTTPRequestContext method), 61
call_in_executor() (kyoukai.asphalt.HTTPRequestContext

method), 43
call_in_executor() (kyoukai.HTTPRequestContext

method), 61
cfg (kyoukai.asphalt.KyoukaiBaseComponent attribute),

40
check_route_args() (kyoukai.Route method), 68
check_route_args() (kyoukai.route.Route method), 51
close() (kyoukai.asphalt.HTTPRequestContext method),

43
close() (kyoukai.backends.http2.H2KyoukaiProtocol

method), 38
close() (kyoukai.HTTPRequestContext method), 62
closed (kyoukai.asphalt.HTTPRequestContext attribute),

44
closed (kyoukai.HTTPRequestContext attribute), 62
computed_prefix (kyoukai.Blueprint attribute), 65
computed_prefix (kyoukai.blueprint.Blueprint attribute),

46
connection_made() (ky-

oukai.backends.http2.H2KyoukaiProtocol
method), 38

connection_made() (ky-
oukai.backends.httptools_.KyoukaiProtocol
method), 35

ConnectionLostEvent (class in kyoukai.asphalt), 39
ConnectionMadeEvent (class in kyoukai.asphalt), 39
context_chain (kyoukai.asphalt.HTTPRequestContext at-

tribute), 44
context_chain (kyoukai.HTTPRequestContext attribute),

62
context_class (kyoukai.app.Kyoukai attribute), 33
cookies (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
create_wsgi_environment() (in module ky-

oukai.backends.http2), 37

D
data (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
data (werkzeug.wrappers.werkzeug.wrappers.Response.Response

attribute), 17
data_received() (kyoukai.backends.http2.H2KyoukaiProtocol

method), 38
data_received() (kyoukai.backends.httptools_.KyoukaiProtocol

method), 35
delete_cookie() (werkzeug.wrappers.werkzeug.wrappers.Response.Response

method), 18
do_argument_checking (kyoukai.route.Route attribute),

50

E
endpoint (kyoukai.route.Route attribute), 50
environ (kyoukai.asphalt.HTTPRequestContext at-

tribute), 42
eof_received() (kyoukai.backends.http2.H2KyoukaiProtocol

method), 38
eof_received() (kyoukai.backends.httptools_.KyoukaiProtocol

method), 36
errorhandler() (in module kyoukai.routegroup), 53
errorhandler() (kyoukai.Blueprint method), 65
errorhandler() (kyoukai.blueprint.Blueprint method), 47
errorhandlers (kyoukai.blueprint.Blueprint attribute), 46

F
files (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
finalize() (kyoukai.app.Kyoukai method), 33
finalize() (kyoukai.Blueprint method), 65
finalize() (kyoukai.blueprint.Blueprint method), 46
finalize() (kyoukai.Kyoukai method), 58
finalize() (kyoukai.testing.TestKyoukai method), 55
finalize() (kyoukai.TestKyoukai method), 69
finalized (kyoukai.blueprint.Blueprint attribute), 46
form (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
freeze() (werkzeug.wrappers.werkzeug.wrappers.Response.Response

method), 17
full_path (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
func.after_request() (built-in function), 24
func.before_request() (built-in function), 24
func.hook() (built-in function), 24

G
get_chunk() (kyoukai.backends.http2.H2State method),

37
get_data() (werkzeug.wrappers.werkzeug.wrappers.Request.Request

method), 16
get_data() (werkzeug.wrappers.werkzeug.wrappers.Response.Response

method), 17

82 Index

Kyoukai Documentation, Release 2.2.1

get_endpoint_name() (kyoukai.Route method), 68
get_endpoint_name() (kyoukai.route.Route method), 50
get_errorhandler() (kyoukai.Blueprint method), 65
get_errorhandler() (kyoukai.blueprint.Blueprint method),

48
get_header() (in module kyoukai.backends.http2), 37
get_hooks() (kyoukai.Blueprint method), 66
get_hooks() (kyoukai.blueprint.Blueprint method), 48
get_hooks() (kyoukai.Route method), 68
get_hooks() (kyoukai.route.Route method), 51
get_protocol() (kyoukai.asphalt.KyoukaiBaseComponent

method), 41
get_protocol() (kyoukai.asphalt.KyoukaiComponent

method), 41
get_protocol() (kyoukai.KyoukaiComponent method), 63
get_resource() (kyoukai.asphalt.HTTPRequestContext

method), 44
get_resource() (kyoukai.HTTPRequestContext method),

62
get_response_headers() (kyoukai.backends.http2.H2State

method), 38
get_rg_bp() (in module kyoukai.routegroup), 52
get_route() (kyoukai.Blueprint method), 66
get_route() (kyoukai.blueprint.Blueprint method), 48
get_server_name() (ky-

oukai.asphalt.KyoukaiBaseComponent
method), 41

get_server_name() (kyoukai.asphalt.KyoukaiComponent
method), 41

get_server_name() (ky-
oukai.backends.http2.H2KyoukaiComponent
method), 38

get_server_name() (kyoukai.KyoukaiComponent
method), 63

get_submount() (kyoukai.Blueprint method), 66
get_submount() (kyoukai.blueprint.Blueprint method), 46
get_submount() (kyoukai.Route method), 68
get_submount() (kyoukai.route.Route method), 50

H
H2KyoukaiComponent (class in ky-

oukai.backends.http2), 38
H2KyoukaiProtocol (class in kyoukai.backends.http2), 38
H2State (class in kyoukai.backends.http2), 37
handle_httpexception() (kyoukai.app.Kyoukai method),

33
handle_httpexception() (kyoukai.Kyoukai method), 59
handle_httpexception() (kyoukai.testing.TestKyoukai

method), 55
handle_httpexception() (kyoukai.TestKyoukai method),

69
handle_parser_exception() (ky-

oukai.backends.httptools_.KyoukaiProtocol
method), 35

headers (werkzeug.wrappers.werkzeug.wrappers.Request.Request
attribute), 15

hook() (in module kyoukai.routegroup), 53
hooks (kyoukai.route.Route attribute), 50
host (kyoukai.Blueprint attribute), 66
host (kyoukai.blueprint.Blueprint attribute), 46
host (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
host_url (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
HTTPRequestContext (class in kyoukai), 60
HTTPRequestContext (class in kyoukai.asphalt), 41

I
if_match (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
if_modified_since (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
if_none_match (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 15
if_range (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16
if_unmodified_since (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16
inject_request() (kyoukai.testing.TestKyoukai method),

54
inject_request() (kyoukai.TestKyoukai method), 70
insert_data() (kyoukai.backends.http2.H2State method),

37
invoke() (kyoukai.Route method), 68
invoke() (kyoukai.route.Route method), 51
invoke_function() (kyoukai.Route method), 69
invoke_function() (kyoukai.route.Route method), 50
ip (kyoukai.asphalt.KyoukaiBaseComponent attribute),

40
is_secure (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16
is_xhr (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16

K
Kyoukai (class in kyoukai), 57
Kyoukai (class in kyoukai.app), 32
kyoukai (module), 31
kyoukai.app (module), 31
kyoukai.asphalt (module), 39
kyoukai.backends (module), 34
kyoukai.backends.http2 (module), 36
kyoukai.backends.httptools_ (module), 34
kyoukai.blueprint (module), 45
kyoukai.route (module), 49
kyoukai.routegroup (module), 51
kyoukai.testing (module), 53
kyoukai.util (module), 56

Index 83

Kyoukai Documentation, Release 2.2.1

KyoukaiBaseComponent (class in kyoukai.asphalt), 40
KyoukaiComponent (class in kyoukai), 63
KyoukaiComponent (class in kyoukai.asphalt), 41
KyoukaiProtocol (class in kyoukai.backends.httptools_),

35

L
log_route() (kyoukai.app.Kyoukai method), 33
log_route() (kyoukai.Kyoukai method), 59
log_route() (kyoukai.testing.TestKyoukai method), 55
log_route() (kyoukai.TestKyoukai method), 70
loop (kyoukai.asphalt.HTTPRequestContext attribute),

44
loop (kyoukai.HTTPRequestContext attribute), 62

M
map (kyoukai.blueprint.Blueprint attribute), 46
match() (kyoukai.Blueprint method), 66
match() (kyoukai.blueprint.Blueprint method), 49
method (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16
mro() (kyoukai.routegroup.RouteGroupType method), 52

N
name (kyoukai.blueprint.Blueprint attribute), 46

O
on_body() (kyoukai.backends.httptools_.KyoukaiProtocol

method), 35
on_header() (kyoukai.backends.httptools_.KyoukaiProtocol

method), 35
on_headers_complete() (ky-

oukai.backends.httptools_.KyoukaiProtocol
method), 35

on_message_begin() (ky-
oukai.backends.httptools_.KyoukaiProtocol
method), 35

on_message_complete() (ky-
oukai.backends.httptools_.KyoukaiProtocol
method), 35

on_url() (kyoukai.backends.httptools_.KyoukaiProtocol
method), 35

P
params (kyoukai.asphalt.HTTPRequestContext attribute),

41
parent (kyoukai.asphalt.HTTPRequestContext attribute),

44
parent (kyoukai.Blueprint attribute), 66
parent (kyoukai.blueprint.Blueprint attribute), 46
parent (kyoukai.HTTPRequestContext attribute), 62
path (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16

pause_writing() (kyoukai.backends.http2.H2KyoukaiProtocol
method), 39

pause_writing() (kyoukai.backends.httptools_.KyoukaiProtocol
method), 36

port (kyoukai.asphalt.KyoukaiBaseComponent attribute),
40

prefix (kyoukai.Blueprint attribute), 66
prefix (kyoukai.blueprint.Blueprint attribute), 46
process_request() (kyoukai.app.Kyoukai method), 33
process_request() (kyoukai.Kyoukai method), 59
process_request() (kyoukai.testing.TestKyoukai method),

55
process_request() (kyoukai.TestKyoukai method), 70
proto (kyoukai.asphalt.HTTPRequestContext attribute),

42

Q
query_string (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16

R
range (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16
raw_write() (kyoukai.backends.http2.H2KyoukaiProtocol

method), 38
raw_write() (kyoukai.backends.httptools_.KyoukaiProtocol

method), 36
read() (kyoukai.backends.http2.H2State method), 37
read_async() (kyoukai.backends.http2.H2State method),

37
receive_data() (kyoukai.backends.http2.H2KyoukaiProtocol

method), 38
register_blueprint() (kyoukai.app.Kyoukai method), 33
register_blueprint() (kyoukai.Kyoukai method), 59
register_blueprint() (kyoukai.testing.TestKyoukai

method), 55
register_blueprint() (kyoukai.TestKyoukai method), 70
remote_addr (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16
remote_user (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16
replace() (kyoukai.backends.httptools_.KyoukaiProtocol

method), 35
request (kyoukai.asphalt.HTTPRequestContext attribute),

41
request_class (kyoukai.app.Kyoukai attribute), 33
request_class (kyoukai.Kyoukai attribute), 59
request_class (kyoukai.testing.TestKyoukai attribute), 56
request_class (kyoukai.TestKyoukai attribute), 70
request_received() (ky-

oukai.backends.http2.H2KyoukaiProtocol
method), 38

request_resource() (ky-
oukai.asphalt.HTTPRequestContext method),

84 Index

Kyoukai Documentation, Release 2.2.1

44
request_resource() (kyoukai.HTTPRequestContext

method), 62
require_resource() (kyoukai.asphalt.HTTPRequestContext

method), 44
require_resource() (kyoukai.HTTPRequestContext

method), 62
response_class (kyoukai.app.Kyoukai attribute), 33
response_class (kyoukai.Kyoukai attribute), 59
response_class (kyoukai.testing.TestKyoukai attribute),

56
response_class (kyoukai.TestKyoukai attribute), 70
resume_writing() (kyoukai.backends.http2.H2KyoukaiProtocol

method), 39
resume_writing() (kyoukai.backends.httptools_.KyoukaiProtocol

method), 36
root (kyoukai.app.Kyoukai attribute), 33
root (kyoukai.Kyoukai attribute), 59
root (kyoukai.testing.TestKyoukai attribute), 56
root (kyoukai.TestKyoukai attribute), 71
Route (class in kyoukai), 67
Route (class in kyoukai.route), 50
route (kyoukai.asphalt.HTTPRequestContext attribute),

42
route() (in module kyoukai.routegroup), 52
route() (kyoukai.Blueprint method), 66
route() (kyoukai.blueprint.Blueprint method), 47
RouteGroup (class in kyoukai), 69
RouteGroup (class in kyoukai.routegroup), 53
RouteGroupType (class in kyoukai.routegroup), 52
RouteInvokedEvent (class in kyoukai.asphalt), 40
RouteMatchedEvent (class in kyoukai.asphalt), 40
RouteReturnedEvent (class in kyoukai.asphalt), 40
routes (kyoukai.blueprint.Blueprint attribute), 46
routes (kyoukai.route.Route attribute), 50
rule (kyoukai.asphalt.HTTPRequestContext attribute), 42
run() (kyoukai.app.Kyoukai method), 34
run() (kyoukai.Kyoukai method), 59
run() (kyoukai.testing.TestKyoukai method), 56
run() (kyoukai.TestKyoukai method), 71

S
scheme (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16
sending_loop() (kyoukai.backends.http2.H2KyoukaiProtocol

method), 38
server (kyoukai.asphalt.KyoukaiBaseComponent at-

tribute), 41
set_cookie() (werkzeug.wrappers.werkzeug.wrappers.Response.Response

method), 17
set_data() (werkzeug.wrappers.werkzeug.wrappers.Response.Response

method), 18
start() (kyoukai.app.Kyoukai method), 34

start() (kyoukai.asphalt.KyoukaiBaseComponent
method), 41

start() (kyoukai.asphalt.KyoukaiComponent method), 41
start() (kyoukai.Kyoukai method), 60
start() (kyoukai.KyoukaiComponent method), 63
start() (kyoukai.testing.TestKyoukai method), 56
start() (kyoukai.TestKyoukai method), 71
start_response() (kyoukai.backends.http2.H2State

method), 37
status (werkzeug.wrappers.werkzeug.wrappers.Response.Response

attribute), 17
status_code (werkzeug.wrappers.werkzeug.wrappers.Response.Response

attribute), 17
stream_complete() (ky-

oukai.backends.http2.H2KyoukaiProtocol
method), 38

T
testing_bp() (kyoukai.testing.TestKyoukai method), 54
testing_bp() (kyoukai.TestKyoukai method), 71
TestKyoukai (class in kyoukai), 69
TestKyoukai (class in kyoukai.testing), 54
threadpool() (kyoukai.asphalt.HTTPRequestContext

method), 45
threadpool() (kyoukai.HTTPRequestContext method), 63
traverse_tree() (kyoukai.Blueprint method), 67
traverse_tree() (kyoukai.blueprint.Blueprint method), 46
tree_routes (kyoukai.Blueprint attribute), 67
tree_routes (kyoukai.blueprint.Blueprint attribute), 46
trusted_hosts (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16

U
url (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16
url_charset (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16
url_for() (kyoukai.asphalt.HTTPRequestContext

method), 45
url_for() (kyoukai.Blueprint method), 67
url_for() (kyoukai.blueprint.Blueprint method), 49
url_for() (kyoukai.HTTPRequestContext method), 63
utc_timestamp (kyoukai.asphalt.ConnectionLostEvent at-

tribute), 40
utc_timestamp (kyoukai.asphalt.ConnectionMadeEvent

attribute), 39
utc_timestamp (kyoukai.asphalt.RouteInvokedEvent at-

tribute), 40
utc_timestamp (kyoukai.asphalt.RouteMatchedEvent at-

tribute), 40
utc_timestamp (kyoukai.asphalt.RouteReturnedEvent at-

tribute), 40

Index 85

Kyoukai Documentation, Release 2.2.1

V
values (werkzeug.wrappers.werkzeug.wrappers.Request.Request

attribute), 16

W
window_opened() (kyoukai.backends.http2.H2KyoukaiProtocol

method), 38
wrap_existing_app() (kyoukai.testing.TestKyoukai class

method), 54
wrap_existing_app() (kyoukai.TestKyoukai class

method), 71
wrap_response() (in module kyoukai.util), 57
wrap_route() (kyoukai.Blueprint method), 67
wrap_route() (kyoukai.blueprint.Blueprint method), 47
write() (kyoukai.backends.httptools_.KyoukaiProtocol

method), 36
write_response() (kyoukai.backends.httptools_.KyoukaiProtocol

method), 36

86 Index

	About
	Installation
	Contents:
	Your First Kyoukai App
	Asphalt usage
	Handling Errors Within Your Application
	Blueprints
	Requests and Responses
	Deploying Your App
	Advanced Routing
	Request Hooks
	Route Groups
	Host Matching
	HTTPS Support
	HTTP/2 Support
	Running Under gunicorn

	Automatically generated API documentation
	Kyoukai Autodoc
	Kyoukai Changelog

	Indices and tables
	Python Module Index

