

Kyoukai (境界)

About

Kyoukai is a fast asynchronous Python server-side web microframework.
It is built upon asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] and Asphalt [http://asphalt.readthedocs.io/] for an easy to use web server.

Kyoukai is Flask inspired; it attempts to be as simple as possible, but
without underlying magic to make it confusing.

Installation

Kyoukai depends heavily on the asyncio library provided by Python3.4+,
and certain language features added in Python 3.5. This means the
library is not compatible with code that does not use Python 3.5 or
above.

Kyoukai is shipped as a PyPI package, so can be installed easily with
pip.

$ pip install kyoukai

Alternatively, if you want cutting edge, you can install directly from
git.

$ pip install git+https://github.com/SunDwarf/Kyoukai.git

Note that the Git version is not guarenteed to be stable, at all.

Contents:

Main usage

	Your First Kyoukai App
	Application Skeleton

	Writing the App

	Creating the route

	Responses

	Running your App

	Deploying

	Finishing your project

	Asphalt usage
	Config File

	Adding Components

	Handling Errors Within Your Application
	The errorhandler decorator

	HTTP Exceptions

	Blueprints
	A note on the tree

	Routing

	Error handlers

	Registering blueprints

	Requests and Responses
	Getting the Request

	Creating a Response

	Response Helpers

	Deploying Your App

Advanced usage

	Request Hooks
	Adding a Hook

	Pre-request hooks

	Post-request hooks

	Route Groups
	Creating a Route Group

	Adding Routes

	Error Handlers

	Request Hooks

	Registering the Group

	Customizing the Blueprint

	Host Matching
	Relation to the Tree

	HTTPS Support
	HTTP and HTTPS multiplexing

	HTTP/2 Support
	Automatic switching

	Manual switching

	API Ref

Automatically generated API documentation

This API documentation is automatically generated by the Sphinx autosummary module.

Autodoc

	Kyoukai Autodoc
	kyoukai.app

	kyoukai.backends
	kyoukai.backends.httptools_

	kyoukai.backends.http2

	kyoukai.asphalt

	kyoukai.blueprint

	kyoukai.route

	kyoukai.routegroup

	kyoukai.testing

	kyoukai.util

Misc

	Kyoukai Changelog
	Version 2.1.3

	Version 2.1.2

	Version 2.1.1

	Version 2.1.0

	Version 2.0.5

	Version 2.0.4.1

	Version 2.0.3

	Version 2.0.2

	Version 2.0.1

	Version 2.0

	Version 1.9.2

	Version 1.9.1

	Version 1.8.6

	Version 1.8.5

	Version 1.8.4

	Version 1.8.3

	Version 1.8.2

	Version 1.8.1

	Version 1.8.0

	Version 1.7.3

	Version 1.7.2

	Version 1.7.0

	Version 1.6.0

	Version 1.5.0

Indices and tables

	Index

	Module Index

	Search Page

Your First Kyoukai App

In this tutorial, we’ll go through how to write your first Kyoukai app.

Application Skeleton

Strap in with your favourite IDE, and create your first new project.
Name it something silly, for example my-first-kyokai-project. The
name doesn’t matter, as you probably won’t be using it for long.

Directory layout

Kyoukai projects have a very simple layout.

$ ls --tree

├── app.py
├── static
└── templates

There are three components here:

	app.py
	This contains the main code for your app. This can be named
absolutely anything, but we’re naming it app for simplicity’s
sake.

	templates
	This contains all the templates used for rendering things
server-side, or for putting your JS stack of doom inside.

	static
	This contains all the static files, such as your five bootstrap
theme CSS files, or the millions of JS libraries you’ve included.

Writing the App

Open up app.py and add your starting line.

from kyoukai import Kyoukai

This imports the Kyoukai application class from the library, allowing you
to create a new object inside your code.

Routes

Routes in Kyoukai are very simple, and if you have ever used Flask, are
similar in style to Flask routes.

Routes are made up of three parts:

	The path

	This is a Werkzeug-based route path that uses Werkzeug to match route paths.
For more information, see http://werkzeug.pocoo.org/docs/0.11/routing/ .

	The allowed methods

	This is a list, or set, or other iterable, of allowed HTTP/1.1
methods for the route to handle. If a method (e .g GET) is not
in the list, the route cannot handle it, and a HTTP 405 error will
automatically be passed to the client.

	The route itself

	Your route is a coroutine that accepts one argument, by default:
the a new HTTPRequestContext, containing the request data
and other context specific data.

async def some_route(ctx: HTTPRequestContext): ...

We are going to write a very simple route that returns a
Hello, world! file.

Creating the route

Routes in Kyoukai are created very similarly to Flask routes: with a
decorator.

@app.route("/path", methods=["GET", "POST"])

As explained above, the route decorator takes a path and a method.

This route decorator returns a Route class, but this isn’t important
right now.

The Route Coroutine

Your route function must be a coroutine. As Kyoukai is async,
your code must also be async.

@app.route("/")
async def index(ctx): ...

Inside our route, we are going to return a string containing the
rendered text from our template.

Templates

Templates are stored in templates/, obviously. They are partial HTML
code, which can have parts in it replaced using code inside the template
itself, or your view.

For now, we will put normal HTML in our file.

Open up templates/index.html and add the following code to it:

It's current year, and you're still using blocking code? Not me!

(note: do not replace current year with the actual current year.)

Save and close the template.

Rendering the template

Rendering the template requires an Asphalt extension - Asphalt Rendering [https://asphalt-templating.readthedocs.io/en/latest/]. Once configured and installed, it can be used to render your template easily.

You can add it to your brand new route like so:

@app.route("/")
async def index(ctx):
 return ctx.jinja2.render("index.html")

Replace jinja2 with the appropriate rendering engine you selected.

Responses

Note, how in the previous coroutine, we simply returned a str in our
route. This is not similar to aiohttp and the likes who force you to
return a Response. You can return a response object in Kyoukai as
normal, but for convenience sake, you can also return simply a string or
a tuple.

These are transparently converted behind the scenes:

r = Response(code=route_result[1] or 200, body=route_result[0], headers=route_result[2] or {})

That is, the first item is converted to your response body, the second
item (or 200 by default) is used as the response code, and the third
code is used as the headers.

Note

All return params except the first is optional, if you do not return a
Response object.

Running your App

The ideal way of running a Kyoukai project is through the Asphalt
framework. See Asphalt usage for more
information on how to use this.

However, Kyoukai includes a built-in way of running the app from
blocking code.

app.run(ip="127.0.0.1", port=4444)

Warning

Whilst using app.run, you will not have Asphalt Rendering enabled in your configuration.

The args passed in here are just the default values; they are
optional.

Open up your web browser and point it to http://localhost:4444/. If
you have done this correctly, you should see something like this:

[image: example 1]
example 1

Deploying

There’s no special procedure for deploying your app. The inbuilt webserver is production ready, and you can run your
application in a production environment in the same way as you would develop it.

Finishing your project

You have completed your first Kyoukai project. For maximum effectiveness,
you must now publish it to GitHub.

$ git init
$ git remote add origin git@github.com:YourName/my-first-kyoukai-project.git
$ git add .
$ git commit -a -m "Initial commit, look how cool I am!"
$ git push -u origin master

Asphalt usage

The Asphalt Framework is a microframework for asyncio-based applications and libraries, providing useful
utilities and common functions to projects built upon it.

It also provides a common interface for applications to use components to enhance the functionality in an easy
asynchronous way.

Config File

The core part about adding Asphalt to your project is the config.yml file that exists at the core of every app.
This defines how the application should be ran, and what settings each component within should have.

These config files are standard YAML files, with one document. An example file for a Kyoukai project would be:

component:
 type: kyoukai.asphalt:KyoukaiComponent
 app: app:kyk

Let’s break this down.

1. First, you have the component: directive. This signifies to Asphalt that you wish to define a list of
components to add to your project.

	Next, you have the type directive. This tells Asphalt what type of component to use in the application.

In this example, the KyoukaiComponent is specified directly, meaning that you wish the framework to
create a single-component application, with the root component being Kyoukai’s handler.

3. Finally, the app directive. This tells the KyoukaiComponent to use the app specified by the
string here.

In app:kyk, the first part before the : signifies the FULL IMPORT NAME (the name you would use in an import
statement, e.g import app), and the second part signifies the object to use.

To run an app using Asphalt, you merely need to run:

asphalt run config.yml

The Asphalt runner will automatically run and load your application.

Adding Components

	Components are a way of adding useful parts to your project without additional manual set up. In this example, we

	will add a SQLAlchemy component to the app.

The Container

First, a new container object is required to store the components that are added to the application. Every
container is inherited from asphalt.core.component.ContainerComponent in order to add components to the app.

We’re gonna start with a small project layout:

$ ls --tree

├── application
│ └── container.py
├── static
└── templates

This will be the basic project format from now on.

Inside container.py, add the following code:

from asphalt.core import ContainerComponent, Context
from kyoukai import Kyoukai
from kyoukai import KyoukaiComponent

app = Kyoukai("api")

class AppContainer(ContainerComponent):
 async def start(self, ctx: Context):
 self.add_component('kyoukai', KyoukaiComponent, ip="127.0.0.1", port=4444,
 app=app)

 await super().start(ctx)

That’s a lot of code to process. Let’s break it down again.

	First, you have the creation of the app. Nothing unusual here.

2. Next, the definition of a subclass for the app. This container contains a set of components, which are added to
the app at run time, and configured appropriately.

3. The addition of the KyoukaiComponent to the app. This adds the Kyoukai handler to Asphalt, which configures the
application to run with additional contexts.

	A super call, which tells Asphalt to run our app immediately.

We’re not done yet, however. Now, the config file needs to be run.

Add a basic configuration file, named config.yml, with this simple piece of code.

component:
 type: application.container:AppContainer
 components:
 kyoukai:
 ip: "127.0.0.1"
 port: 4444

This creates a new AppContainer instance, and edits the configuration of the Kyoukai component within to set the IP
and port to the ones in the config file.

To run this application, it’s as simple as the first Asphalt call:

asphalt run config.yml

Adding SQLAlchemy

Now that you’ve seen how to add basic components to your project, adding SQLAlchemy is easy.

Edit your start method in your AppContainer to add this line above your super call:

self.add_component('sqlalchemy', SQLAlchemyComponent)

Make sure to the add the import for this (from asphalt.sqlalchemy.component import SQLAlchemyComponent) too.

Next, in your config.yml, add a new section under components:

sqlalchemy:
 url: "sqlite3:///tmp/database.db"
 metadata: application.db:metadata

This will automatically configure a SQLite3 database at /tmp/database.db to run with your application.

Note that the reference for the metadata doesn’t exist. You create your metadata like any other SQLAlchemy
application, however you don’t add an engine or a session. The engine and session are automatically provided.

Handling Errors Within Your Application

As with all code, eventually bugs and other exceptions will come up and risk ruining everything inside your app.
Fortunately, Kyoukai handles these errors for you, and allows you to process them safely.

Error handlers are a way of handling errors easily. They are automatically called when an exception is encounted
inside a route.

For example, if you have a piece of faulty code:

return "{}".format(a) # 'a' is not defined

A NameError [https://docs.python.org/3/library/exceptions.html#NameError] will normally be raised. However, Kyoukai will automatically catch the error, and re-raise it as
a HTTP 500 exception. Normally, this exception wouldn’t be handled, and would respond to the client with a 500
body. However, it is possible to catch this exception and do what you wish with it.

The errorhandler decorator

To create an error handler, you simply wrap an existing function with the errorhandler decorator, providing the
integer error code that you wish to handle. So for example, to create a 500 error handler, you would do:

@app.root.errorhandler(500)
async def handle_500(ctx: HTTPRequestContext, exc: HTTPException):
 return repr(exception_to_handle)

Of course, you can have anything in the body of the error handler. Whatever is returned from this error handler is
sent back to the client.

HTTP Exceptions

HTTP exceptions in Kyoukai are handled by Werkzeug, which prevents having to rewrite large amounts of the error
handling internally.

For more information on Werkzeug’s HTTPException, see werkzeug.exceptions.HTTPException [http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException].

To abort out of a function early, you can use werkzeug.exceptions.abort() to raise a HTTPException:

if something is bad:
 abort(404)

Blueprints

New in version 1.5.

Changed in version 2.1.2: Host Matching is now supported. See Host Matching.

In Kyoukai, routes are stored inside a tree structure consisting of multiple Blueprint objects with a parent and
children. Each Blueprint contains a group of routes stored on it, which inherit the request hooks and the API prefix
of all of its parents.

Blueprints are instantiated similar to app objects, with a name.

my_blueprint = Blueprint("my_blueprint")

Additionally, blueprints take an additional set of parameters which can be used to more finely control the behaviour.

	
	url_prefix: The URL prefix to add to every request.

	For example, if this is set to /api/v1`, every request attached to this blueprint will only be accessible
via ``/api/v1/<route>.

A note on the tree

Blueprints are stored inside a tree structure - that means that all Blueprints have a parent blueprint and 0 to N
children blueprints.

	When registering an error handler, or a request hook, children blueprints automatically inherit these unless they are

	overriden on the child level.

Routing

Routing with Blueprints is incredibly similar to routing with a bare app object. Internally, an @app.route maps
to routing on an underlying Blueprint object used as the “root” blueprint.

@my_blueprint.route("/some/route")
async def some_route(ctx: HTTPRequestContext):
 return "Some route"

	
Blueprint.route(routing_url, methods=('GET',), **kwargs)

	Convenience decorator for adding a route.

This is equivalent to:

route = bp.wrap_route(func, **kwargs)
bp.add_route(route, routing_url, methods)

Error handlers

Error handlers with Blueprints are handled exactly the same as error handlers on bare app objects. The difference
between these however is that error handlers are local to the Blueprint and its children.

@my_blueprint.errorhandler(500)
async def e500(ctx: HTTPRequestContext, err: Exception):
 return "Handled an error"

	
Blueprint.errorhandler(code)

	Helper decorator for adding an error handler.

This is equivalent to:

route = bp.add_errorhandler(cbl, code)

	Parameters:	code (int [https://docs.python.org/3/library/functions.html#int]) – The error handler code to use.

Registering blueprints

If, after creating your blueprint, you attempt to navigate to /some/route you will find a 404 error living there
instead. This is because you did not register the Blueprint to your application.

app.register_blueprint(my_blueprint)

Internally, this adds a child to the root blueprint, and sets the parent of the child to the root blueprint.
If you have a blueprint that you wish to inherit from, you must register your Blueprint as a child of the Blueprint
you wish to inherit from.

my_blueprint.add_child(my_other_blueprint)

	
Kyoukai.register_blueprint(child)

	Registers a child blueprint to this app’s root Blueprint.

This will set up the Blueprint tree, as well as setting up the routing table when finalized.

	Parameters:	child (Blueprint) – The child Blueprint to add. This must be an instance of Blueprint.

	
Blueprint.add_child(blueprint)

	Adds a Blueprint as a child of this one.
This is automatically called when using another Blueprint as a parent.

	Parameters:	blueprint (Blueprint) – The blueprint to add as a child.

	Return type:	Blueprint

Requests and Responses

Requests and Responses are crucial parts of a HTTP framework - the request contains data that is
received from the client, and the Response contains data that is sent to the Client.

Kyoukai piggybacks off of Werkzeug for its request and response wrappers - this means that most of
the form logic and etc is handled by a well tested library used in thousands of applications
across the web.

Getting the Request

The Request [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request] object for the current request is available on
request for your route functions to use.

For example, returning a JSON blob of the headers:

async def my_route(ctx: HTTPRequestContext):
 headers = json.dumps(ctx.headers)
 return headers

Creating a Response

Responses are automatically created for you when you return from a route function or error
handler. However, it is possible to create them manually:

async def my_route(ctx: HTTPRequestContext):
 return Response("Hello, world", status=200)

Response Helpers

New in version 2.1.3.

There are some built-in helper functions to encode data in a certain form:

	
kyoukai.util.as_html(text, code=200, headers=None)

	Returns a HTML response.

return as_html("<h1>Hel Na</h1>", code=403)

	Parameters:	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text to return.

	code (int [https://docs.python.org/3/library/functions.html#int]) – The status code of the response.

	headers (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Any optional headers.

	Return type:	Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response]

	Returns:	A new werkzeug.wrappers.Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response] representing the HTML.

	
kyoukai.util.as_plaintext(text, code=200, headers=None)

	Returns a plaintext response.

return as_plaintext("hel yea", code=201)

	Parameters:	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text to return.

	code (int [https://docs.python.org/3/library/functions.html#int]) – The status code of the response.

	headers (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Any optional headers.

	Return type:	Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response]

	Returns:	A new werkzeug.wrappers.Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response] representing the text.

	
kyoukai.util.as_json(data, code=200, headers=None, *, json_encoder=None)

	Returns a JSON response.

return as_json({"response": "yes", "code": 201}, code=201)

	Parameters:	
	data (Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list]]) – The data to encode.

	code (int [https://docs.python.org/3/library/functions.html#int]) – The status code of the response.

	headers (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Any optional headers.

	json_encoder (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][JSONEncoder]) – The encoder class to use to encode.

	Return type:	Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response]

	Returns:	A new werkzeug.wrappers.Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response] representing the JSON.

Deploying Your App

Unlike some other frameworks, Kyoukai’s built in web server is production ready and you do not need any specific
setup to use your web application in production.

That said, if you want to get the best performance out of Kyoukai, you need to run the app with a special flag, the
-O flag.

This flag is a builtin flag to the Python interpreter, and automatically skips costly assert statements that can
slow down your app.
This means you invoke the application with python -O -m asphalt.core.command run config.yml.

Request Hooks

Request hooks are a convenient way of performing actions before and after a request is processed by your code. There
are several types of request hooks:

	Global-level request hooks, which take action on ALL routes.
These can be technically seen as root blueprint-level hooks, since they act on the root blueprint.

	Blueprint-level request hooks, which take action at the blueprint level.
These are registered on a blueprint, and act on all routes registered to that blueprint, as well as all
routes registered to children blueprints.

	Route-level request hooks, which take action on individual routes.

All hooks must complete successfully. If any hook fails, then the request will fail with a 500 Internal Server
Error.

Note

Global-level hooks are registered with app.add_hook and family, but actually redirect to the root blueprint.

Adding a Hook

Adding a hook can be done with add_hook() or add_hook(). These take a type param and
a the hook function to add.

Alternatively, you can use the helper functions:

	
Blueprint.before_request(func)

	Convenience decorator to add a pre-request hook.

	
Route.before_request(func)

	Convenience decorator to add a post-request hook.

	
Blueprint.after_request(func)

	Convenience decorator to add a post-request hook.

	
Route.after_request(func)

	Convenience decorator to add a pre-request hook.

Pre-request hooks

Pre-request hooks are hooks that are fired before a request handler is invoked. They are fired in the order they
are added.

Pre-request hooks take one param: the HTTPRequestContext that the request is going to be invoked with. They
can either return the modified context, a new context, or None to use the previous context as the new one.

async def print_request(ctx: HTTPRequestContext):
 print("Request for", ctx.request.path)
 return ctx # can be omitted to leave `ctx` in place

Post-request hooks

Post-request hooks are hooks that are fired after a request is invoked. They are fired in the order they are added.

Post-request hooks take two params: The HTTPRequestContext that the request was invoked with, and the
wrapped result (NOT the final result!) of the response handler. They can either return a modified Response,
or None to use the previous Response as the new one.

async def jsonify(ctx, response):
 if not isinstance(response.response, dict):
 return response

 r.set_data(json.dumps(response.response))
 return r

Route Groups

New in version 2.1.2.

Route Groups are a way of grouping routes together into a single class, where they can all
access the members of the class. This is easier than having global shared state, and easily
allows having “route” templates.

Creating a Route Group

All route groups descend from RouteGroup, or use RouteGroupType as the
metaclass. The former uses the latter as its metaclass, which is a shorter version.

from kyoukai.routegroup import RouteGroup, RouteGroupType

form 1, easiest form
class MyRouteGroup(RouteGroup):
 ...

form 2, explicit metaclass
class MyRouteGroup(metaclass=RouteGroupType):
 ...

Note

By default, route groups have no magic __init__. You are free to implement this in
whatever way you like, including passing parameters to it.

Adding Routes

To make your route group useful, you need to add some routes to it. The RouteGroup module
includes a special decorator that marks a route function as a new Route during instance
creation, route().

This method takes the same arguments as the regular route decorator; the only difference is
that it returns the original function in the class body rather than returning a new Route object.
Instead, certain attributes are set on the new function that are picked up during scanning,
such as in_group.

from kyoukai.routegroup import RouteGroup, route

class MyRouteGroup(RouteGroup):
 @route("/heck", methods=("GET", "POST"))
 async def heck_em_up(self, ctx: HTTPRequestContext):
 return "get hecked"

This will register heck_em_up as a route on the new route group.

	
kyoukai.routegroup.route(url, methods=('GET',), **kwargs)

	A companion function to the RouteGroup class. This follows Blueprint.route() in
terms of arguments, and marks a function as a route inside the class.

This will return the original function, with some attributes attached:

	in_group: Marks the function as in the route group.

	rg_delegate: Internal. The type of function inside the group this is.

	route_kwargs: Keyword arguments to provide to wrap_route.

	route_url: The routing URL to provide to add_route.

	route_methods: The methods for the route.

	route_hooks: A defaultdict of route-specific hooks.

Additionally, the following methods are added.

	hook: A decorator that adds a hook of type type_.

	before_request: A decorator that adds a pre hook.

	after_request: A decorator that adds a post hook.

New in version 2.1.1.

Changed in version 2.1.3: Added the ability to add route-specific hooks.

	Parameters:	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing URL of the route.

	methods (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – An iterable of methods for the route.

Error Handlers

New in version 2.1.3.

Route groups can also have group-specific error handlers, using errorhandler().

@errorhandler(500)
async def handle_errors(self, ctx, exc):
 ...

	
kyoukai.routegroup.errorhandler(code)

	A companion function to the RouteGroup class. This follows Blueprint.errorhandler() in
terms of arguments.

	Parameters:	code (int [https://docs.python.org/3/library/functions.html#int]) – The code for the error handler.

Request Hooks

New in version 2.1.3.

Route groups can have both Blueprint-specific error handlers, and route-specific error handlers,
using the helper functions.

For Blueprint-specific, you can use hook() (or, better, aliases
before_request() and after_request()).

@before_request
async def before_req(self, ctx):
 ...

Adding route-specific hooks is possible by calling @route.hook on the newly wrapped function.
This is achieved by setting a special decorator function on the function object modified by the
route decorator.

@heck_em_up.before_req
async def whatever(self, ctx):
 ...

	
kyoukai.routegroup.hook(type_)

	Marks a function as a hook.

	Parameters:	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of hook to mark.

	
kyoukai.routegroup.before_request(func)

	Helper decorator to mark a function as a pre-request hook.

	
kyoukai.routegroup.after_request(func)

	Helper decorator to mark a function as a post-request hook.

	
@func.hook(type_: str)

	Marks a function as a route-specific hook.

	Parameters:	type – The type of hook to add.

	
@func.before_request

	Marks a function as a before-request hook.

	
@func.after_request

	Marks a function as an after-request hook.

Registering the Group

Adding the group to your app is as simple as instantiating the group and calling
Blueprint.add_route_group() with the instance.

rg = MyRouteGroup()
app.root.add_route_group(rg)

Of course, an alias for this exists on Kyoukai which redirects to the root blueprint.

	
Blueprint.add_route_group(group)

	Adds a route group to the current Blueprint.

	Parameters:	group (RouteGroup) – The RouteGroup to add.

Customizing the Blueprint

Route groups work by using an underlying Blueprint that is populated with all the routes from the
class body during instantiation. The Blueprint can be customized by passing arguments in the
class definition to the metaclass, which are stored and later used to create the new Blueprint
object.

class MyRouteGroup(RouteGroup, prefix="/api/v1")
 ...

To get the blueprint object from a RouteGroup instance, you can use get_rg_bp().

	
kyoukai.routegroup.get_rg_bp(group)

	Gets the Blueprint created from a RouteGroup.

Host Matching

New in version 2.1.3.

Kyoukai comes with built-in support for Werkzeug host matching:

enable host matching in the tree
this needs to be set on the root blueprint for the blueprint tree
app = Kyoukai("my_website", host_matching=True)

set a host on a sub-blueprint
all sub-blueprints of `bp` will now use the host `api.myname.me`
bp = Blueprint("api", host="api.myname.me")

As shown above, host matching is easy to enable, requiring only two changes.

	host_matching MUST be set on the root Blueprint (passed here via the app) - this will
enable host matching when building the final map.

	host is passed into the Blueprint constructor, which specifies the host that will be
matched for each route in this Blueprint.

In the example above, all routes registered to bp will only match if the Host header is
api.myname.me. However, all routes registered to other Blueprints will match on any hosts.

Relation to the Tree

Children Blueprints will copy their host from the parent, unless overridden. So, for example:

only host match ``myname.me``
app = Kyoukai("my_website", host="myname.me")

bp1 will only obey requests from `myname.me`
bp1 = Blueprint("something")
app.register_blueprint(bp1)

bp2 will only obey requests from `something.myname.me`, overriding the global host match
bp2 = Blueprint("something else", host="something.myname.me")
app.register_blueprint(bp2)

bp3 however will inherit its parents host matching (bp2)
bp3 = Blueprint("something finally")
bp2.add_child(bp3)

HTTPS Support

New in version 2.1.

Kyoukai’s built in web server comes with native TLS support with secure defaults. Enabling it is as
simple as creating a new block in the config file:

The SSL configuration for the built-in webserver
ssl:
 # Is SSL enabled?
 # If this is False, the certfile and keyfile will not be loaded.
 enabled: true

 # The public key certificate for the webserver to use.
 ssl_certfile: server.crt

 # The private keyfile for the webserver to use.
 ssl_keyfile: server.key

HTTPS will then automatically be enabled for this connection.

HTTP and HTTPS multiplexing

This is not currently supported.

HTTP/2 Support

New in version 2.1.0.

Kyoukai comes with built in support for HTTP/2, thanks to to the H2 library.

Enabling HTTP2 requires:

	TLS/SSL to be enabled

	h2 to be installed

	The http2 key in the config to be True, or manual switching to be enabled

Automatic switching

Kyoukai supports automatically upgrading to HTTP/2 via ALPN/NPN protocols (the default for making
new connections over TLS) or with plain old h2c.

To enable automatic upgrade, add the http2 key to your config file, under the kyoukai
component, like so:

Enables automatic HTTP/2 connection switching.
This will switch to the HTTP/2 protocol parser when a connection is created.
http2: true

Now, when connecting over TLS (or HTTP/1.1 with h2c) the connection will be automatically
upgraded to a HTTP/2 connection.

Manual switching

It is possible to enforce HTTP/2 only, or otherwise manual switching, with the usage of
H2KyoukaiProtocol.

To switch to this component, change KyoukaiComponent to H2KyoukaiComponent in your
application component
container like so:

self.add_component('kyoukai', H2KyoukaiComponent, ip="127.0.0.1", port=4444,
 app=app)

API Ref

	
class kyoukai.backends.http2.H2KyoukaiComponent(app, ssl_keyfile, ssl_certfile, *, ip='127.0.0.1', port=4444)

	Bases: kyoukai.asphalt.KyoukaiBaseComponent

A component subclass that creates H2KyoukaiProtocol instances.

Creates a new HTTP/2 SSL-based context.

This will use the HTTP/2 protocol, disabling HTTP/1.1 support for this port. It is possible to run two
servers side-by-side, one HTTP/2 and one HTTP/1.1, if you run them on different ports.

	
get_server_name()

	

	Returns:	The server name of this app.

	
class kyoukai.backends.http2.H2KyoukaiProtocol(component, parent_context)

	Bases: asyncio.protocols.Protocol

The base protocol for Kyoukai, using H2.

	
raw_write(data)

	Writes to the underlying transport.

	
connection_made(transport)

	Called when a connection is made.

	Parameters:	transport (WriteTransport) – The transport made by the connection.

	
data_received(data)

	Called when data is received from the underlying socket.

	
_processing_done(environ, stream_id)

	Callback for when processing is done on a request.

	
coroutine sending_loop(self, stream_id)

	This loop continues sending data to the client as it comes off of the queue.

	
request_received(event)

	Called when a request has been received.

	
window_opened(event)

	Called when a control flow window has opened again.

	
receive_data(event)

	Called when a request has data that has been received.

	
stream_complete(event)

	Called when a stream is complete.

This will invoke Kyoukai, which will handle the request.

	
close(error_code=0)

	Called to terminate the connection for some reason.

This will close the underlying transport.

	
eof_received()

	Called when the other end calls write_eof() or equivalent.

If this returns a false value (including None), the transport
will close itself. If it returns a true value, closing the
transport is up to the protocol.

	
pause_writing()

	Called when the transport’s buffer goes over the high-water mark.

Pause and resume calls are paired – pause_writing() is called
once when the buffer goes strictly over the high-water mark
(even if subsequent writes increases the buffer size even
more), and eventually resume_writing() is called once when the
buffer size reaches the low-water mark.

Note that if the buffer size equals the high-water mark,
pause_writing() is not called – it must go strictly over.
Conversely, resume_writing() is called when the buffer size is
equal or lower than the low-water mark. These end conditions
are important to ensure that things go as expected when either
mark is zero.

NOTE: This is the only Protocol callback that is not called
through EventLoop.call_soon() – if it were, it would have no
effect when it’s most needed (when the app keeps writing
without yielding until pause_writing() is called).

	
resume_writing()

	Called when the transport’s buffer drains below the low-water mark.

See pause_writing() for details.

	
class kyoukai.backends.http2.H2State(headers, stream_id, protocol)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A temporary class that is used to store request data for a HTTP/2 connection.

This is also passed to the Werkzeug request to emit data.

	
insert_data(data)

	Writes data from the stream into the body.

	
coroutine read_async(self, to_end=True)

	There’s no good way to do this - WSGI isn’t async, after all.

However, you can use read_async on the Werkzeug request (which we subclass) to wait until the request has
finished streaming.

	Parameters:	to_end – If to_end is specified, then read until the end of the request.
Otherwise, it will read one data chunk.

	
read(size=-1)

	Reads data from the request until it’s all done.

	Parameters:	size (int [https://docs.python.org/3/library/functions.html#int]) – The maximum amount of data to receive.

	Return type:	bytes [https://docs.python.org/3/library/functions.html#bytes]

	
get_chunk()

	Gets a chunk of data from the queue.

	Return type:	bytes [https://docs.python.org/3/library/functions.html#bytes]

	
start_response(status, headers, exc_info=None)

	The start_response callable that is plugged into a Werkzeug response.

	
get_response_headers()

	Called by the protocol once the Response is writable to submit the request to the HTTP/2 state machine.

Kyoukai Autodoc

This is automatically generated API documentation for the kyoukai module.

Kyoukai is an async web framework for Python 3.5 and above.

	app
	The core application.

	backends
	Various backends that interface with the Kyoukai application.

	asphalt
	Asphalt wrappers for Kyoukai.

	blueprint
	A blueprint is a container - a collection of routes.

	route
	Routes are wrapped function objects that are called upon a HTTP request.

	routegroup
	Route groups are classes that allow you to group a set of routes together.

	testing
	Testing helpers for Kyoukai.

	util
	Misc utilities for usage inside the framework.

	
class kyoukai.Kyoukai(application_name, *, server_name=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The Kyoukai type is the core of the Kyoukai framework, and the core of your web application based upon the
Kyoukai framework. It acts as a central router and request processor that takes in requests from the protocols
and returns responses.

The application name is currently unused, but it is good practice to set it correctly anyway in case it is used
in future editions of Kyoukai.

You normally create an application instance inside your component file, like so:

from kyoukai.app import Kyoukai

... # setup code

kyk = Kyoukai("my_app")
kyk.register_blueprint(whatever)

... # other setup

class MyContainer(ContainerComponent):
 async def start(self, ctx):
 self.add_component('kyoukai', KyoukaiComponent, ip="127.0.0.1", port=4444,
 app="app:app")

Of course, you can also embed Kyoukai inside another app, by awaiting Kyoukai.start().

	Parameters:	
	application_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the application that is being created. This is
passed to the Blueprint being created as the root blueprint.

	server_name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Keyword-only. The SERVER_NAME to use inside the fake WSGI environment created for url_for, if applicable.

	host_matching – Should host matching be enabled? This will be implicitly True if host is not None.

	host – The host used for host matching, to be passed to the root Blueprint.
By default, no host is used, so all hosts are matched on the root Blueprint.

	application_root – Keyword-only. The APPLICATION_ROOT to use inside the fake WSGI
environment created for url_for, if applicable.

	loop – Keyword-only. The asyncio event loop to use for this app. If no loop is
specified it, will be automatically fetched using asyncio.get_event_loop().

	request_class – Keyword-only. The custom request class to instantiate requests with.

	response_class – Keyword-only. The custom response class to instantiate responses
with.

	
finalize()

	Finalizes the app and blueprints.

This will calculate the current werkzeug.routing.Map [http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map] which is required for
routing to work.

	
coroutine handle_httpexception(self, ctx, exception, environ=None)

	Handle a HTTP Exception.

	Parameters:	
	ctx (HTTPRequestContext) – The context of the request.

	exception (HTTPException [http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException]) – The HTTPException

	environ (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – The fake WSGI environment.

	Return type:	Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response]

	Returns:	A werkzeug.wrappers.Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response] that handles this response.

	
log_route(request, code)

	Logs a route invocation.

	Parameters:	
	request (Request [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request]) – The request produced.

	code (int [https://docs.python.org/3/library/functions.html#int]) – The response code of the route.

	
coroutine process_request(self, request, parent_context)

	Processes a Request and returns a Response object.

This is the main processing method of Kyoukai, and is meant to be used by one of the HTTP
server backends, and not by client code.

	Parameters:	
	request (Request [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request]) – The werkzeug.wrappers.Request [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request] object to process.
A new HTTPRequestContext will be provided to wrap this request inside of
to client code.

	parent_context (Context) – The asphalt.core.Context that is the parent context for this particular app.
It will be used as the parent for the HTTPRequestContext.

	Return type:	Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response]

	Returns:	A werkzeug.wrappers.Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response] object that can be written to the client
as a response.

	
register_blueprint(child)

	Registers a child blueprint to this app’s root Blueprint.

This will set up the Blueprint tree, as well as setting up the routing table when finalized.

	Parameters:	child (Blueprint) – The child Blueprint to add. This must be an instance of Blueprint.

	
request_class

	alias of Request

	
response_class

	alias of Response

	
root

	

	Return type:	Blueprint

	Returns:	The root Blueprint for the routing tree.

	
run(ip='127.0.0.1', port=4444, *, component=None)

	Runs the Kyoukai server from within your code.

This is not normally invoked - instead Asphalt should invoke the Kyoukai component.
However, this is here for convenience.

	
coroutine start(self, ip='127.0.0.1', port=4444, *, component=None, base_context=None)

	Runs the Kyoukai component asynchronously.

This will bypass Asphalt’s default runner, and allow you to run your app easily inside
something else, for example.

	Parameters:	
	ip (str [https://docs.python.org/3/library/stdtypes.html#str]) – The IP of the built-in server.

	port (int [https://docs.python.org/3/library/functions.html#int]) – The port of the built-in server.

	component – The component to start the app with. This should be an instance of kyoukai.asphalt.KyoukaiComponent.

	base_context (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Context]) – The base context that the HTTPRequestContext should be started with.

	
class kyoukai.HTTPRequestContext(parent, request)

	Bases: asphalt.core.context.Context

The context subclass passed to all requests within Kyoukai.

	
get_resources(type=None, *, include_parents=True)

	Return the currently published resources specific to one type or all types.

	Parameters:	
	type (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type], None]) – type of the resources to return, or None to return all resources

	include_parents (bool [https://docs.python.org/3/library/functions.html#bool]) – include the resources from parent contexts

	Return type:	Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Resource]

	
parent

	Return the parent of this context or None if there is no parent context.

	Return type:	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Context]

	
publish_lazy_resource(creator, types, alias='default', context_attr=None)

	Publish a “lazy” or “contextual” resource and dispatch a resource_published event.

Instead of a concrete resource value, you supply a creator callable which is called with a
context object as its argument when the resource is being requested either via
request_resource() or by context attribute access.
The return value of the creator callable will be cached so the creator will only be called
once per context instance.

If the creator callable is a coroutine function or returns an awaitable, it is resolved
before storing the resource value and returning it to the requester. Note that this will
NOT work when a context attribute has been specified for the resource.

	Parameters:	
	creator (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Context], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – a callable taking a context instance as argument

	types (Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]]]) – type(s) to register the resource as

	alias (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of this resource (unique among all its registered types)

	context_attr (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – name of the context attribute this resource will be accessible as

	Return type:	Resource

	Returns:	the resource handle

	Raises:	asphalt.core.context.ResourceConflict – if there is an existing resource creator for
the given types or context variable

	
publish_resource(value, alias='default', context_attr=None, *, types=())

	Publish a resource and dispatch a resource_published event.

	Parameters:	
	value – the actual resource value

	alias (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of this resource (unique among all its registered types)

	context_attr (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – name of the context attribute this resource will be accessible as

	types (Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]]]) – type(s) to register the resource as (omit to use the type of value)

	Return type:	Resource

	Returns:	the resource handle

	Raises:	asphalt.core.context.ResourceConflict – if the resource conflicts with an existing
one in any way

	
remove_resource(resource)

	Remove the given resource from the collection and dispatch a resource_removed event.

	Parameters:	resource (Resource) – the resource to be removed

	Raises:	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – the given resource was not in the collection

	
coroutine request_resource(self, type, alias='default', *, timeout=None)

	Request a resource matching the given type and alias.

If no such resource was found, this method will wait timeout seconds for it to become
available. The timeout does not apply to resolving awaitables created by lazy resource
creators.

	Parameters:	
	type (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) – type of the requested resource

	alias (str [https://docs.python.org/3/library/stdtypes.html#str]) – alias of the requested resource

	timeout (Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None]) – the timeout (in seconds; omit to use the context’s default timeout)

	Returns:	the value contained by the requested resource (NOT a Resource
instance)

	Raises:	asphalt.core.context.ResourceNotFound – if the requested resource does not become
available in the allotted time

	
url_for(endpoint, *, method, **kwargs)

	A context-local version of url_for.

For more information, see the documentation on url_for().

	
class kyoukai.KyoukaiComponent(app, ip='127.0.0.1', port=4444, **cfg)

	Bases: kyoukai.asphalt.KyoukaiBaseComponent

A component for Kyoukai.

This includes the built-in HTTP server.

Creates a new component.

	Parameters:	
	app – The application object to use.
This can either be the real application object, or a string that resolves to a reference for the real application object.

	ip (str [https://docs.python.org/3/library/stdtypes.html#str]) – If using the built-in HTTP server, the IP to bind to.

	port (int [https://docs.python.org/3/library/functions.html#int]) – If using the built-in HTTP server, the port to bind to.

	cfg – Additional configuration.

	
get_protocol(ctx, serv_info)

	Gets the protocol to use for this webserver.

	
get_server_name()

	

	Returns:	The server name of this app.

	
coroutine start(self, ctx)

	Starts the webserver if required.

	Parameters:	ctx (Context) – The base context.

	
class kyoukai.Blueprint(name, parent=None, prefix='', *, host_matching=False, host=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A Blueprint class contains a Map of URL rules, which is checked and ran for every

	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this Blueprint.
This is used when generating endpoints in the finalize stage.

	parent (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Blueprint]) – The parent of this Blueprint.
Parent blueprints will gather the routes of their children, and return a giant
werkzeug.routing.Map [http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map] object that contains all of the route maps in the children

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – The prefix to be added to the start of every route name.
This is inherited from parents - the parent prefix will also be added to the start of
every route.

	host_matching (bool [https://docs.python.org/3/library/functions.html#bool]) – Should host matching be enabled?
This is implicitly True if host is non-None.

	host (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The host of the Blueprint. Used for custom subdomain routing.
If this is None, then this Blueprint will be used for all hosts.

	
add_child(blueprint)

	Adds a Blueprint as a child of this one.
This is automatically called when using another Blueprint as a parent.

	Parameters:	blueprint (Blueprint) – The blueprint to add as a child.

	Return type:	Blueprint

	
add_errorhandler(cbl, errorcode)

	Adds an error handler to the table of error handlers.

A blueprint can only have one error handler per code. If it doesn’t have an error handler
for that code, it will try to fetch recursively the parent’s error handler.

	Parameters:	
	cbl – The callable error handler.

	errorcode (int [https://docs.python.org/3/library/functions.html#int]) – The error code to handle, for example 404.

	
add_hook(type_, hook)

	Adds a hook to the current Blueprint.

	Parameters:	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of hook to add (currently “pre” or “post”).

	hook – The callable function to add as a hook.

	
add_route(route, routing_url, methods=('GET',))

	Adds a route to the routing table and map.

	Parameters:	
	route (Route) – The route object to add.

This can be gotten from Blueprint.wrap_route, or by
directly creating a Route object.

	routing_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Werkzeug-compatible routing URL to add this route under.

For more information, see http://werkzeug.pocoo.org/docs/0.11/routing/.

	methods (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – An iterable of valid method this route can be called with.

	Returns:	The unmodified Route object.

	
add_route_group(group)

	Adds a route group to the current Blueprint.

	Parameters:	group (RouteGroup) – The RouteGroup to add.

	
after_request(func)

	Convenience decorator to add a post-request hook.

	
before_request(func)

	Convenience decorator to add a pre-request hook.

	
errorhandler(code)

	Helper decorator for adding an error handler.

This is equivalent to:

route = bp.add_errorhandler(cbl, code)

	Parameters:	code (int [https://docs.python.org/3/library/functions.html#int]) – The error handler code to use.

	
finalize(**map_options)

	Called on the root Blueprint when all Blueprints have been registered and the app is
starting.

This will automatically build a werkzeug.routing.Map [http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map] of
werkzeug.routing.Rule [http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Rule] objects for each Blueprint.

Note

Calling this on sub-blueprints will have no effect, apart from generating a Map.
It is recommended to only call this on the root Blueprint.

	Parameters:	map_options – The options to pass to the created Map.

	Return type:	Map [http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map]

	Returns:	The werkzeug.routing.Map [http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map] created from the routing tree.

	
get_errorhandler(exc)

	Recursively acquires the error handler for the specified error.

	Parameters:	exc (Union [https://docs.python.org/3/library/typing.html#typing.Union][HTTPException [http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException], int [https://docs.python.org/3/library/functions.html#int]]) – The exception to get the error handler for.
This can either be a HTTPException object, or an integer.

	Return type:	Union [https://docs.python.org/3/library/typing.html#typing.Union][None, Route]

	Returns:	The Route object that corresponds to the error handler,
or None if no error handler could be found.

	
get_hooks(type_)

	Gets a list of hooks that match the current type.

These are ordered from parent to child.

	Parameters:	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of hooks to get (currently “pre” or “post”).

	Returns:	An iterable of hooks to run.

	
get_route(endpoint)

	Gets the route associated with an endpoint.

	Return type:	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Route]

	
host

	

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:	The host for this Blueprint, or the host of any parent Blueprint.

	
match(environment)

	Matches with the WSGI environment.

	Parameters:	environment (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The environment dict to perform matching with.

You can use the environ argument of a Request to get the environment back.

	Return type:	Tuple[Route, Container [https://docs.python.org/3/library/typing.html#typing.Container][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Returns:	A Route object, which can be invoked to return the right response, and the parameters to invoke it with.

	
parent

	

	Return type:	Blueprint

	Returns:	The parent Blueprint of this blueprint.

	
prefix

	

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:	The combined prefix of this Blueprint.

	
route(routing_url, methods=('GET',), **kwargs)

	Convenience decorator for adding a route.

This is equivalent to:

route = bp.wrap_route(func, **kwargs)
bp.add_route(route, routing_url, methods)

	
traverse_tree()

	Traverses the tree for children Blueprints.

	Return type:	Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Blueprint, None, None]

	
tree_routes

	

	Return type:	Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Route, None, None]

	Returns:	A generator that yields all routes from the tree, from parent to children.

	
url_for(environment, endpoint, *, method=None, **kwargs)

	Gets the URL for a specified endpoint using the arguments of the route.

This works very similarly to Flask’s url_for.

It is not recommended to invoke this method directly - instead, url_for is set on the
context object that is provided to your user function. This will allow you to invoke it
with the correct environment already set.

	Parameters:	
	environment (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The WSGI environment to use to bind to the adapter.

	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – The endpoint to try and retrieve.

	method (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – If set, the method to explicitly provide (for similar endpoints with
different allowed routes).

	kwargs – Keyword arguments to provide to the route.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:	The built URL for this endpoint.

	
wrap_route(cbl, *args, **kwargs)

	Wraps a callable in a Route.

This is required for routes to be added.
:param cbl: The callable to wrap.
:rtype: Route
:return: A new Route object.

	
class kyoukai.Route(function, reverse_hooks=False, should_invoke_hooks=True, do_argument_checking=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A route object is a wrapped function.
They invoke this function when invoked on routing and calling.

	Parameters:	
	function – The underlying callable.
This can be a function, or any other callable.

	reverse_hooks (bool [https://docs.python.org/3/library/functions.html#bool]) – If the request hooks should be reversed for this request (i.e child to parent.)

	should_invoke_hooks (bool [https://docs.python.org/3/library/functions.html#bool]) – If request hooks should be invoked.
This is automatically False for error handlers.

	do_argument_checking (bool [https://docs.python.org/3/library/functions.html#bool]) – If argument type and name checking is enabled for this route.

	
add_hook(type_, hook)

	Adds a hook to the current Route.

	Parameters:	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of hook to add (currently “pre” or “post”).

	hook – The callable function to add as a hook.

	
after_request(func)

	Convenience decorator to add a pre-request hook.

	
before_request(func)

	Convenience decorator to add a post-request hook.

	
check_route_args(params=None)

	Checks the arguments for a route.

	Parameters:	params (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – The parameters passed in, as a dict.

	Raises:	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the arguments passed in were not correct.

	
create_rule()

	Creates the rule object used by this route.

	Return type:	Rule [http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Rule]

	Returns:	A new werkzeug.routing.Rule [http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Rule] that is to be used for this route.

	
get_endpoint_name(bp=None)

	Gets the endpoint name for this route.

	
get_hooks(type_)

	Gets the hooks for the current Route for the type.

	Parameters:	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type to get.

	Returns:	A list of callables.

	
coroutine invoke(self, ctx, params=None)

	Invokes a route.
This will run the underlying function.

	Parameters:	
	ctx – The HTTPRequestContext which is used in this request.

	params (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Container [https://docs.python.org/3/library/typing.html#typing.Container][+T_co]]) – Any params that are used in this request.

	Return type:	Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response]

	Returns:	The result of the route’s function.

	
coroutine invoke_function(self, ctx, pre_hooks, post_hooks, params)

	Invokes the underlying callable.

This is for use in chaining routes.
:param ctx: The HTTPRequestContext to use for this route.
:type pre_hooks: list [https://docs.python.org/3/library/stdtypes.html#list]
:param pre_hooks: A list of hooks to call before the route is invoked.
:type post_hooks: list [https://docs.python.org/3/library/stdtypes.html#list]
:param post_hooks: A list of hooks to call after the route is invoked.
:param params: The parameters to pass to the function.
:return: The result of the invoked function.

	
class kyoukai.RouteGroup

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A route group is a class that contains multiple methods that are decorated with the route
decorator. They produce a blueprint that can be added to the tree that includes all methods
in the route group.

class MyGroup(RouteGroup, url_prefix="/api/v1"):
 def __init__(self, something: str):
 self.something = something

 @route("/ping")
 async def ping(self, ctx: HTTPRequestContext):
 return '{"response": self.something}'

Blueprint parameters can be passed in the class call.

To add the route group as a blueprint, use
Blueprint.add_route_group(MyGroup, *args, **kwargs)().

	
class kyoukai.TestKyoukai(*args, base_context=None, **kwargs)

	Bases: kyoukai.app.Kyoukai

A special subclass that allows you to easily test your Kyoukai-based app.

	Parameters:	base_context (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Context]) – The base context to use for all request testing.

	
finalize()

	Finalizes the app and blueprints.

This will calculate the current werkzeug.routing.Map [http://werkzeug.pocoo.org/docs/0.11/routing/#werkzeug.routing.Map] which is required for
routing to work.

	
coroutine handle_httpexception(self, ctx, exception, environ=None)

	Handle a HTTP Exception.

	Parameters:	
	ctx (HTTPRequestContext) – The context of the request.

	exception (HTTPException [http://werkzeug.pocoo.org/docs/0.11/exceptions/#werkzeug.exceptions.HTTPException]) – The HTTPException

	environ (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – The fake WSGI environment.

	Return type:	Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response]

	Returns:	A werkzeug.wrappers.Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response] that handles this response.

	
coroutine inject_request(self, headers, url, method='GET', body=None)

	Injects a request into the test client.

This will automatically create the correct context.

	Parameters:	
	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The headers to use.

	body (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The body to use.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URL to use.

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The method to use.

	Return type:	Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response]

	Returns:	The result.

	
log_route(request, code)

	Logs a route invocation.

	Parameters:	
	request (Request [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request]) – The request produced.

	code (int [https://docs.python.org/3/library/functions.html#int]) – The response code of the route.

	
coroutine process_request(self, request, parent_context)

	Processes a Request and returns a Response object.

This is the main processing method of Kyoukai, and is meant to be used by one of the HTTP
server backends, and not by client code.

	Parameters:	
	request (Request [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request]) – The werkzeug.wrappers.Request [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Request] object to process.
A new HTTPRequestContext will be provided to wrap this request inside of
to client code.

	parent_context (Context) – The asphalt.core.Context that is the parent context for this particular app.
It will be used as the parent for the HTTPRequestContext.

	Return type:	Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response]

	Returns:	A werkzeug.wrappers.Response [http://werkzeug.pocoo.org/docs/0.11/wrappers/#werkzeug.wrappers.Response] object that can be written to the client
as a response.

	
register_blueprint(child)

	Registers a child blueprint to this app’s root Blueprint.

This will set up the Blueprint tree, as well as setting up the routing table when finalized.

	Parameters:	child (Blueprint) – The child Blueprint to add. This must be an instance of Blueprint.

	
request_class

	alias of Request

	
response_class

	alias of Response

	
root

	

	Return type:	Blueprint

	Returns:	The root Blueprint for the routing tree.

	
run(ip='127.0.0.1', port=4444, *, component=None)

	Runs the Kyoukai server from within your code.

This is not normally invoked - instead Asphalt should invoke the Kyoukai component.
However, this is here for convenience.

	
coroutine start(self, ip='127.0.0.1', port=4444, *, component=None, base_context=None)

	Runs the Kyoukai component asynchronously.

This will bypass Asphalt’s default runner, and allow you to run your app easily inside
something else, for example.

	Parameters:	
	ip (str [https://docs.python.org/3/library/stdtypes.html#str]) – The IP of the built-in server.

	port (int [https://docs.python.org/3/library/functions.html#int]) – The port of the built-in server.

	component – The component to start the app with. This should be an instance of kyoukai.asphalt.KyoukaiComponent.

	base_context (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Context]) – The base context that the HTTPRequestContext should be started with.

	
testing_bp()

	Context handler that allows with TestKyoukai.testing_bp() as bp:

You can then register items onto this new root blueprint until __exit__, which will then destroy the blueprint.

	Return type:	_TestingBpCtxManager

	
classmethod wrap_existing_app(other_app, base_context=None)

	Wraps an existing app in a test frame.

This allows easy usage of writing unit tests:

main.py
kyk = Kyoukai("my_app")

test.py
testing = TestKyoukai.wrap_existing_app(other_app)
use testing as you would normally

	Parameters:	
	other_app (Kyoukai) – The application object to wrap.
Internally, this creates a new instance of ourselves, then sets the process_request
of the subclass to the copied object.

This means whenever inject_request is called, it will use the old app’s
process_request to run with,
which will use the environment of the previous instance.

Of course, if the old app has any side effects upon process_request, these side effects
will happen when the testing application runs as well, as the old app is completely
copied over.

	base_context (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Context]) – The base context to use for this.

kyoukai.app

The core application.

Functions

	run_application(component,

 kyoukai.backends

kyoukai.backends

Various backends that interface with the Kyoukai application.

	httptools_
	A high-performance HTTP/1.1 backend for the Kyoukai webserver using httptools [https://github.com/MagicStack/httptools].

	http2
	A HTTP/2 interface to Kyoukai.

 kyoukai.backends.httptools_

kyoukai.backends.httptools_

A high-performance HTTP/1.1 backend for the Kyoukai webserver using httptools [https://github.com/MagicStack/httptools].

Functions

	get_formatted_response(response,

 kyoukai.backends.http2

kyoukai.backends.http2

A HTTP/2 interface to Kyoukai.

This uses https://python-hyper.org/projects/h2/en/stable/asyncio-example.html as a reference and a base. Massive thanks
to the authors of this page.

This server has some notable pitfalls:

	It ignores any priority data that is sent by the client.

	It is not paticularly fast (unbenchmarked, but it can be assumed to be slower than the httptools backend.)

	It does not fully implement all events.

Additionally, this server is untested - it can and probably will fail horribly in production. Use with caution :)

Functions

	create_wsgi_environment(r)
	Creates a new WSGI environment from the RequestData provided.

	get_header(headers,

 kyoukai.asphalt

kyoukai.asphalt

Asphalt wrappers for Kyoukai.

Functions

	resolve_reference(ref)
	Return the object pointed to by ref.

Classes

	Blueprint(name[,

 kyoukai.blueprint

kyoukai.blueprint

A blueprint is a container - a collection of routes.

Kyoukai uses Blueprints to create a routing tree - a tree of blueprints that are used to collect routes together and
match routes easily.

Functions

	get_rg_bp(group)
	Gets the Blueprint created from a RouteGroup.

Classes

	Blueprint(name[,

 kyoukai.route

kyoukai.route

Routes are wrapped function objects that are called upon a HTTP request.

Functions

	wrap_response(args[,

 kyoukai.routegroup

kyoukai.routegroup

Route groups are classes that allow you to group a set of routes together.

Functions

	after_request(func)
	Helper decorator to mark a function as a post-request hook.

	before_request(func)
	Helper decorator to mark a function as a pre-request hook.

	errorhandler(code)
	A companion function to the RouteGroup class.

	get_rg_bp(group)
	Gets the Blueprint created from a RouteGroup.

	hook(type_)
	Marks a function as a hook.

	route(url[,

 kyoukai.testing

